- -

Labeling confidence for uncertainty-aware histology image classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Labeling confidence for uncertainty-aware histology image classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author del Amor, Rocío es_ES
dc.contributor.author Silva-Rodríguez, Julio es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2024-05-31T18:17:16Z
dc.date.available 2024-05-31T18:17:16Z
dc.date.issued 2023-07 es_ES
dc.identifier.issn 0895-6111 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204616
dc.description.abstract [EN] Deep learning-based models applied to digital pathology require large, curated datasets with high-quality (HQ) annotations to perform correctly. In many cases, recruiting expert pathologists to annotate large databases is not feasible, and it is necessary to collect additional labeled data with varying label qualities, e.g., pathologists-in-training (henceforth, non-expert annotators). Learning from datasets with noisy labels is more challenging in medical applications since medical imaging datasets tend to have instance-dependent noise and suffer from high inter/intra-observer variability. In this paper, we design an uncertainty-driven labeling strategy with which we generate soft labels from 10 non-expert annotators for multi-class skin cancer classification. Based on this soft annotation, we propose an uncertainty estimation-based framework to handle these noisy labels. This framework is based on a novel formulation using a dual-branch min-max entropy calibration to penalize inexact labels during the training. Comprehensive experiments demonstrate the promising performance of our labeling strategy. Results show a consistent improvement by using soft labels with standard cross-entropy loss during training (similar to 4.0% F1-score) and increases when calibrating the model with the proposed min-max entropy calibration (similar to 6.6% F1-score). These improvements are produced at negligible cost, both in terms of annotation and calculation. es_ES
dc.description.sponsorship Funding from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under the grant agreement No. 860627 (CLARIFY) , the Spanish Ministry of Economy and Competitiveness through project PID2019-105142RB-C21 (AI4SKIN) and GVA through the project INNEST/2021/321 (SAMUEL). The work of Rocio del Amor has been supported by the Spanish Ministry of Universities (FPU20/05263). The work of J. Silva-Rodriguez was carried out during his previous position at Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computerized Medical Imaging and Graphics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Digital pathology es_ES
dc.subject Non-expert annotators es_ES
dc.subject Uncertainty estimation es_ES
dc.subject Model calibration es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Labeling confidence for uncertainty-aware histology image classification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compmedimag.2023.102231 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU/CLoud ARtificial Intelligence For pathologY/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//INNEST%2F2021%2F321/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MIU//FPU20%2F05263/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Del Amor, R.; Silva-Rodríguez, J.; Naranjo Ornedo, V. (2023). Labeling confidence for uncertainty-aware histology image classification. Computerized Medical Imaging and Graphics. 107. https://doi.org/10.1016/j.compmedimag.2023.102231 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compmedimag.2023.102231 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 107 es_ES
dc.identifier.pmid 37087899 es_ES
dc.relation.pasarela S\488117 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Universidades es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem