Mostrar el registro sencillo del ítem
dc.contributor.author | Navarro-Navarro, Ángela | es_ES |
dc.contributor.author | Zamudio-Ramirez, Israel | es_ES |
dc.contributor.author | Biot-Monterde, Vicente | es_ES |
dc.contributor.author | Osornio-Rios, Roque A. | es_ES |
dc.contributor.author | Antonino-Daviu, J. | es_ES |
dc.date.accessioned | 2024-05-31T18:17:19Z | |
dc.date.available | 2024-05-31T18:17:19Z | |
dc.date.issued | 2022-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204618 | |
dc.description.abstract | [EN] Induction motors (IMs) have been extensively used for driving a wide variety of processes in several industries. Their excellent performance, capabilities and robustness explain their extensive use in several industrial applications. However, despite their robustness, IMs are susceptible to failure, with broken rotor bars (BRB) being one of the potential faults. These types of faults usually occur due to the high current amplitude flowing in the bars during the starting transient. Currently, soft-starters have been used in order to reduce the negative effects and stresses developed during the starting. However, the addition of these devices makes the fault diagnosis a complex and sometimes erratic task, since the typical fault-related patterns evolutions are usually irregular, depending on particular aspects that may change according to the technology implemented by the soft-starter. This paper proposes a novel methodology for the automatic detection of BRB in IMs under the influence of soft-starters. The proposal relies on the combined analysis of current and stray flux signals by means of suitable indicators proposed here, and their fusion through a linear discriminant analysis (LDA). Finally, the LDA output is used to train a feed-forward neural network (FFNN) to automatically detect the severity of the failure, namely: a healthy motor, one broken rotor bar, and two broken rotor bars. The proposal is validated under a testbench consisting of a kinematic chain driven by a 1.1 kW IM and using four different models of soft-starters. The obtained results demonstrate the capabilities of the proposal, obtaining a correct classification rate (94.4% for the worst case). | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Ciencia Innovación y Universidades and FEDER program in the framework of the Proyectos de I+D de Generación de Conocimiento del Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i, Subprograma Estatal de Generación de Conocimiento (ref: PGC2018-095747-B-I00). The authors would like to thank Consejo Nacional de Ciencia y Tecnología (CONACyT) under scholarship 652815. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Current signals | es_ES |
dc.subject | Stray flux signals | es_ES |
dc.subject | LDA | es_ES |
dc.subject | Automatic fault diagnosis | es_ES |
dc.subject | Induction motor | es_ES |
dc.subject | Broken rotor bars | es_ES |
dc.subject | Soft-starters | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Current and Stray Flux Combined Analysis for the Automatic Detection of Rotor Faults in Soft-Started Induction Motors | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en15072511 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095747-B-I00/ES/TECNOLOGIAS AVANZADAS BASADAS EN EL ANALISIS DEL FLUJO DE DISPERSION EN REGIMEN TRANSITORIO PARA EL DIAGNOSTICO PRECOZ DE ANOMALIAS ELECTROMECANICAS EN MOTORES ELECTRICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONAHCYT/CONACYT//652815/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Navarro-Navarro, Á.; Zamudio-Ramirez, I.; Biot-Monterde, V.; Osornio-Rios, RA.; Antonino-Daviu, J. (2022). Current and Stray Flux Combined Analysis for the Automatic Detection of Rotor Faults in Soft-Started Induction Motors. Energies. 15(7). https://doi.org/10.3390/en15072511 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en15072511 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\459880 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Consejo Nacional de Humanidades, Ciencias y Tecnologías, México | es_ES |