- -

Systematic keyword and bias analyses in hate speech detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Systematic keyword and bias analyses in hate speech detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peña-Sarracén, Gretel Liz de la es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2024-06-03T18:17:00Z
dc.date.available 2024-06-03T18:17:00Z
dc.date.issued 2023-09 es_ES
dc.identifier.issn 0306-4573 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204644
dc.description.abstract [EN] Hate speech detection refers broadly to the automatic identification of language that may be considered discriminatory against certain groups of people. The goal is to help online platforms to identify and remove harmful content. Humans are usually capable of detecting hatred in critical cases, such as when the hatred is non-explicit, but how do computer models address this situation? In this work, we aim to contribute to the understanding of ethical issues related to hate speech by analysing two transformer-based models trained to detect hate speech. Our study focuses on analysing the relationship between these models and a set of hateful keywords extracted from the three well-known datasets. For the extraction of the keywords, we propose a metric that takes into account the division among classes to favour the most common words in hateful contexts. In our experiments, we first compared the overlap between the extracted keywords with the words to which the models pay the most attention in decision-making. On the other hand, we investigate the bias of the models towards the extracted keywords. For the bias analysis, we characterize and use two metrics and evaluate two strategies to try to mitigate the bias. Surprisingly, we show that over 50% of the salient words of the models are not hateful and that there is a higher number of hateful words among the extracted keywords. However, we show that the models appear to be biased towards the extracted keywords. Experimental results suggest that fitting models with hateful texts that do not contain any of the keywords can reduce bias and improve the performance of the models. es_ES
dc.description.sponsorship This work was done in the framework of the research project on Fairness and Transparency for equitable NLP applications in social media, funded by MCIN/AEI/10.13039/501100011033 and by ERDF, EU A way of making EuropePI. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information Processing & Management es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Hate speech detection es_ES
dc.subject Keyword extraction es_ES
dc.subject Bias analysis es_ES
dc.subject Bias mitigation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Systematic keyword and bias analyses in hate speech detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ipm.2023.103433 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124361OB-C31/ES/FAIRTRANSNLP-STEREOTYPES: IDENTIFICACION DE ESTEREOTIPOS Y PREJUICIOS Y DESARROLLO DE SISTEMAS EQUITATIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Peña-Sarracén, GLDL.; Rosso, P. (2023). Systematic keyword and bias analyses in hate speech detection. Information Processing & Management. 60(5). https://doi.org/10.1016/j.ipm.2023.103433 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ipm.2023.103433 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\495947 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem