- -

Conditional scenario-based model predictive control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Conditional scenario-based model predictive control

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González, Edwin es_ES
dc.contributor.author Sanchís Saez, Javier es_ES
dc.contributor.author Salcedo-Romero-de-Ávila, José-Vicente es_ES
dc.contributor.author Martínez Iranzo, Miguel Andrés es_ES
dc.date.accessioned 2024-06-03T18:17:33Z
dc.date.available 2024-06-03T18:17:33Z
dc.date.issued 2023-07 es_ES
dc.identifier.issn 0016-0032 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204663
dc.description.abstract [EN] This paper proposes a novel MPC approach called conditional scenario-based model predictive control (CSB-MPC), developed for discrete-time linear systems affected by parametric uncertainties and/or additive disturbances, which are correlated and with bounded support. At each control period, a primary set of equiprobable scenarios is generated and subsequently approximated to a new reduced set of conditional scenarios in which each has its respective probabilities of occurrence. This new set is considered for solving an optimal control problem in whose cost function the predicted states and inputs are penalised according to the probabilities associated with the uncertainties on which they depend in order to give more importance to predictions that involve realisations with a higher probability of occurrence. The performances of this new approach and those of a standard scenario-based MPC are compared through two numerical examples, and the results show greater probabilities of not transgressing the state constraints by the former, even when considering a smaller number of scenarios than the scenario-based MPC. es_ES
dc.description.sponsorship This work was supported in part by the MCIN/AEI/10.13039/501100011033 under Grant PID2020-120087GB-C21, and in part by the Ministry of Science, Technology and Innovation of Colombia under scholarship programme 885. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of the Franklin Institute es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Conditional scenario es_ES
dc.subject Model predictive control (MPC) es_ES
dc.subject Scenario-based MPC es_ES
dc.subject Scenario reduction es_ES
dc.subject Stochastic MPC es_ES
dc.subject Stochastic programming es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Conditional scenario-based model predictive control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfranklin.2023.05.012 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-120087GB-C21/ES/NUEVO METODO DE APRENDIZAJE POR REFUERZO MULTIOBJETIVO BASADO EN MODELOS. APLICACION A CONTROL PREDICTIVO./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministerio de Ciencia, Tecnología e Innovación, Colombia//885-2020/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation González, E.; Sanchís Saez, J.; Salcedo-Romero-De-Ávila, J.; Martínez Iranzo, MA. (2023). Conditional scenario-based model predictive control. Journal of the Franklin Institute. 360(10):6880-6905. https://doi.org/10.1016/j.jfranklin.2023.05.012 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jfranklin.2023.05.012 es_ES
dc.description.upvformatpinicio 6880 es_ES
dc.description.upvformatpfin 6905 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 360 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\493975 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia, Tecnología e Innovación, Colombia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem