Mostrar el registro sencillo del ítem
dc.contributor.author | Carrión-Ponz, Salvador | es_ES |
dc.contributor.author | López-Chilet, Álvaro | es_ES |
dc.contributor.author | Martínez-Bernia, Javier | es_ES |
dc.contributor.author | Coll-Alonso, Joan | es_ES |
dc.contributor.author | Chorro-Juan, Daniel | es_ES |
dc.contributor.author | Gomez, J.A. | es_ES |
dc.date.accessioned | 2024-06-06T07:00:01Z | |
dc.date.available | 2024-06-06T07:00:01Z | |
dc.date.issued | 2022-05-27 | es_ES |
dc.identifier.isbn | 978-3-031-06426-5 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204754 | |
dc.description.abstract | [EN] Computer-aided diagnosis based on intelligent systems is an effective strategy to improve the efficiency of healthcare systems while reducing their costs. In this work, the epilepsy detection task is approached in two different ways, recurrent and convolutional neural networks, within a patient-specific scheme. Additionally, a detector function and its effects on seizure detection performance are presented. Our results suggest that it is possible to detect seizures from scalp EEGs with acceptable results for some patients, and that the DeepHealth framework is a proper deep learning software for medical research. | es_ES |
dc.description.sponsorship | This project has received funding from the European Commission -Horizon 2020 (H2020) under the DeepHealth Project (grant agreement no 825111), and the SELENE project (grant agreement no 871467). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | 21st Internarional Conference on Image, Analysis and Processings (ICIAP 2022), Proceedings, Part I, II, III | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Epilepsy | es_ES |
dc.subject | Electroencephalogram | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Automatic Detection of Epileptic Seizures with Recurrent and Convolutional Neural Networks | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-031-13321-3_46 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825111/EU/Deep-Learning and HPC to Boost Biomedical Applications for Health/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/871467/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Carrión-Ponz, S.; López-Chilet, Á.; Martínez-Bernia, J.; Coll-Alonso, J.; Chorro-Juan, D.; Gomez, J. (2022). Automatic Detection of Epileptic Seizures with Recurrent and Convolutional Neural Networks. Springer. 522-532. https://doi.org/10.1007/978-3-031-13321-3_46 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 21st Internarional Conference on Image, Analysis and Processings (ICIAP 2022) | es_ES |
dc.relation.conferencedate | Mayo 23-27,2022 | es_ES |
dc.relation.conferenceplace | Lecce, Italy | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-031-13321-3_46 | es_ES |
dc.description.upvformatpinicio | 522 | es_ES |
dc.description.upvformatpfin | 532 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\466096 | es_ES |
dc.contributor.funder | European Commission | es_ES |