Mostrar el registro sencillo del ítem
dc.contributor.author | Laqdiem-Marin, Marwan | es_ES |
dc.contributor.author | García-Fayos, Julio | es_ES |
dc.contributor.author | Carrillo-Del Teso, Alfonso Juan | es_ES |
dc.contributor.author | Almar-Liante, Laura | es_ES |
dc.contributor.author | Balaguer Ramirez, Maria | es_ES |
dc.contributor.author | Fabuel Robledo, Maria | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2024-06-07T18:10:41Z | |
dc.date.available | 2024-06-07T18:10:41Z | |
dc.date.issued | 2023-12-18 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204810 | |
dc.description.abstract | [EN] Oxygen transport membranes (OTMs) are a promising oxygen production technology with high energy efficiency due to the potential for thermal integration. However, conventional perovskite materials of OTMs are unstable in CO2 atmospheres, which limits their applicability in oxycombustion processes. On the other hand, some dual-phase membranes are stable in CO2 and SO2 without permanent degradation. However, oxygen permeation is still insufficient; therefore, intensive research focuses on boosting oxygen permeation. Here, we present a novel dual-phase membrane composed of an ion-conducting fluorite phase (Ce0.8Tb0.2O2-delta, CTO) and an electronic-conducting spinel phase (Co2MnO4, CMO). CMO spinel exhibits high electronic conductivity (60 Scm(-1) at 800 degrees C) compared to other spinels used in dual-phase membranes, i.e., 230 times higher than that of NiFe2O4 (NFO). This higher conductivity ameliorates gas-solid surface exchange and bulk diffusion mechanisms. By activating the bulk membrane with a CMO/CTO porous catalytic layer, it was possible to achieve an oxygen flux of 0.25 mLmin(-1)cm(-2) for the 40CMO/60CTO (%(vol)), 680 mu m-thick membrane at 850 degrees C even under CO2-rich environments. This dual-phase membrane shows excellent potential as an oxygen transport membrane or oxygen electrode under high CO2 and oxycombustion operation. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Science and (PID2022-139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AEI/10.13039/501100011033) by MCIN with funding from NextGenerationEU (PRTR-C17.I1) within the Planes Complementarios con CCAA (Area of Green Hydrogen and Energy) and it has been carried out in the CSIC Interdisciplinary Thematic Platform (PTI+) Transicion Energetica Sostenible+ (PTI-TRANSENER+). Also, the Universitat Politecnica de Valencia (UPV) is gratefully acknowledged. The authors would like to thank Dr. J. L. Jorda for the help with XRD. In addition, the support of the Servicio de Microscopia Electronica of the UPV is acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Applied Energy Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Oxygen permeation | es_ES |
dc.subject | Dual-phase | es_ES |
dc.subject | CO2 | es_ES |
dc.subject | Surface reactions | es_ES |
dc.subject | Oxycombustion | es_ES |
dc.title | Co2MnO4/Ce0.8Tb0.2O2-δ Dual-Phase Membrane Material with High CO2 Stability and Enhanced Oxygen Transport for Oxycombustion Processes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acsaem.3c02606 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139663OB-I00/ES/DESCARBONIZACION DE LA INDUSTRIA DE PROCESOS MEDIANTE LA CATALISIS INTENSIFICADA POR INTEGRACION DE TECNOLOGIAS FACILITADORAS ESENCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//CEX2021-001230-S/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Laqdiem-Marin, M.; García-Fayos, J.; Carrillo-Del Teso, AJ.; Almar-Liante, L.; Balaguer Ramirez, M.; Fabuel Robledo, M.; Serra Alfaro, JM. (2023). Co2MnO4/Ce0.8Tb0.2O2-δ Dual-Phase Membrane Material with High CO2 Stability and Enhanced Oxygen Transport for Oxycombustion Processes. ACS Applied Energy Materials. 7(1):302-311. https://doi.org/10.1021/acsaem.3c02606 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acsaem.3c02606 | es_ES |
dc.description.upvformatpinicio | 302 | es_ES |
dc.description.upvformatpfin | 311 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2574-0962 | es_ES |
dc.identifier.pmid | 38213555 | es_ES |
dc.identifier.pmcid | PMC10777685 | es_ES |
dc.relation.pasarela | S\510785 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |