- -

Co2MnO4/Ce0.8Tb0.2O2-δ Dual-Phase Membrane Material with High CO2 Stability and Enhanced Oxygen Transport for Oxycombustion Processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Co2MnO4/Ce0.8Tb0.2O2-δ Dual-Phase Membrane Material with High CO2 Stability and Enhanced Oxygen Transport for Oxycombustion Processes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Laqdiem-Marin, Marwan es_ES
dc.contributor.author García-Fayos, Julio es_ES
dc.contributor.author Carrillo-Del Teso, Alfonso Juan es_ES
dc.contributor.author Almar-Liante, Laura es_ES
dc.contributor.author Balaguer Ramirez, Maria es_ES
dc.contributor.author Fabuel Robledo, Maria es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2024-06-07T18:10:41Z
dc.date.available 2024-06-07T18:10:41Z
dc.date.issued 2023-12-18 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204810
dc.description.abstract [EN] Oxygen transport membranes (OTMs) are a promising oxygen production technology with high energy efficiency due to the potential for thermal integration. However, conventional perovskite materials of OTMs are unstable in CO2 atmospheres, which limits their applicability in oxycombustion processes. On the other hand, some dual-phase membranes are stable in CO2 and SO2 without permanent degradation. However, oxygen permeation is still insufficient; therefore, intensive research focuses on boosting oxygen permeation. Here, we present a novel dual-phase membrane composed of an ion-conducting fluorite phase (Ce0.8Tb0.2O2-delta, CTO) and an electronic-conducting spinel phase (Co2MnO4, CMO). CMO spinel exhibits high electronic conductivity (60 Scm(-1) at 800 degrees C) compared to other spinels used in dual-phase membranes, i.e., 230 times higher than that of NiFe2O4 (NFO). This higher conductivity ameliorates gas-solid surface exchange and bulk diffusion mechanisms. By activating the bulk membrane with a CMO/CTO porous catalytic layer, it was possible to achieve an oxygen flux of 0.25 mLmin(-1)cm(-2) for the 40CMO/60CTO (%(vol)), 680 mu m-thick membrane at 850 degrees C even under CO2-rich environments. This dual-phase membrane shows excellent potential as an oxygen transport membrane or oxygen electrode under high CO2 and oxycombustion operation. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Science and (PID2022-139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AEI/10.13039/501100011033) by MCIN with funding from NextGenerationEU (PRTR-C17.I1) within the Planes Complementarios con CCAA (Area of Green Hydrogen and Energy) and it has been carried out in the CSIC Interdisciplinary Thematic Platform (PTI+) Transicion Energetica Sostenible+ (PTI-TRANSENER+). Also, the Universitat Politecnica de Valencia (UPV) is gratefully acknowledged. The authors would like to thank Dr. J. L. Jorda for the help with XRD. In addition, the support of the Servicio de Microscopia Electronica of the UPV is acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Applied Energy Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Oxygen permeation es_ES
dc.subject Dual-phase es_ES
dc.subject CO2 es_ES
dc.subject Surface reactions es_ES
dc.subject Oxycombustion es_ES
dc.title Co2MnO4/Ce0.8Tb0.2O2-δ Dual-Phase Membrane Material with High CO2 Stability and Enhanced Oxygen Transport for Oxycombustion Processes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acsaem.3c02606 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139663OB-I00/ES/DESCARBONIZACION DE LA INDUSTRIA DE PROCESOS MEDIANTE LA CATALISIS INTENSIFICADA POR INTEGRACION DE TECNOLOGIAS FACILITADORAS ESENCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//CEX2021-001230-S/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Laqdiem-Marin, M.; García-Fayos, J.; Carrillo-Del Teso, AJ.; Almar-Liante, L.; Balaguer Ramirez, M.; Fabuel Robledo, M.; Serra Alfaro, JM. (2023). Co2MnO4/Ce0.8Tb0.2O2-δ Dual-Phase Membrane Material with High CO2 Stability and Enhanced Oxygen Transport for Oxycombustion Processes. ACS Applied Energy Materials. 7(1):302-311. https://doi.org/10.1021/acsaem.3c02606 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acsaem.3c02606 es_ES
dc.description.upvformatpinicio 302 es_ES
dc.description.upvformatpfin 311 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2574-0962 es_ES
dc.identifier.pmid 38213555 es_ES
dc.identifier.pmcid PMC10777685 es_ES
dc.relation.pasarela S\510785 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem