Mostrar el registro sencillo del ítem
dc.contributor.author | Vivancos-Grau, Arturo | es_ES |
dc.contributor.author | Miró Herrero, Rafael | es_ES |
dc.contributor.author | Barrachina, Teresa | es_ES |
dc.contributor.author | Bernal, Álvaro | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2024-06-08T18:07:36Z | |
dc.date.available | 2024-06-08T18:07:36Z | |
dc.date.issued | 2024-04 | es_ES |
dc.identifier.issn | 0306-4549 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204831 | |
dc.description.abstract | [EN] Nuclide evolution is a key aspect in nuclear reactor design and operation. Burnup (or depletion) codes evaluate the isotopic inventory evolution. The inherent need for nuclear safety, the development in computational capabilities, and new discoveries in related areas, such as mathematical methods, result in constant software re-evaluation and improvement. Now, many stochastic-based burnup codes are being developed in comparison to deterministic-based ones, which also present advantages and interesting aspects. In this work, nuclear li-braries, processing requirements, data workflow, and methodologies are studied for the development of a brand-new burnup code linked to the VALKIN-FVM-Sn deterministic transport code. As a result, the requirements to create, and couple, a burnup code have been assessed, establishing a methodology. The burnup code has been developed and contrasted with an industry reference. The resulting coupling is a lattice code foundation to be used in a Multiphysics platform. | es_ES |
dc.description.sponsorship | This work has been partially supported by Grant PGC2018-096437-B-I00-AR funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe", by the "European Union" and Grant PRE2019-089431 funded by MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Annals of Nuclear Energy | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Depletion | es_ES |
dc.subject | Burnup | es_ES |
dc.subject | Neutron transport | es_ES |
dc.subject | Transition matrix | es_ES |
dc.subject | FVM | es_ES |
dc.subject | DO | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Deterministic neutron transport and burnup code coupling assessment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.anucene.2023.110291 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096437-B-I00/ES/APLICACION INTEGRADA DE FISICA DE REACTORES PARA SIMULACIONES A GRAN ESCALA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PRE2019-089431/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Vivancos-Grau, A.; Miró Herrero, R.; Barrachina, T.; Bernal, Á.; Verdú Martín, GJ. (2024). Deterministic neutron transport and burnup code coupling assessment. Annals of Nuclear Energy. 198. https://doi.org/10.1016/j.anucene.2023.110291 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.anucene.2023.110291 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 198 | es_ES |
dc.relation.pasarela | S\507270 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |