Mostrar el registro sencillo del ítem
dc.contributor.author | Gimenez-Guzman, Jose Manuel | es_ES |
dc.contributor.author | Marsa-Maestre, Ivan | es_ES |
dc.contributor.author | Cruz-Piris, Luis | es_ES |
dc.contributor.author | Orden, David | es_ES |
dc.contributor.author | Tejedor-Romero, Marino | es_ES |
dc.date.accessioned | 2024-06-10T18:23:37Z | |
dc.date.available | 2024-06-10T18:23:37Z | |
dc.date.issued | 2023-03-01 | es_ES |
dc.identifier.issn | 1110-0168 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204932 | |
dc.description.abstract | [EN] There are several recent research lines addressing Wi-Fi network planning and optimiza-tion, both in terms of channel assignment and access point deployment. The problem with these works is that evaluation is usually performed with specific and closed models regarding signal prop-agation, throughput computation, and utility definition. Also, many of the models in the literature make assumptions about the role of wireless stations, or the co-channel interference, which-while being valid in the context of a single research work-makes very difficult to compare different approaches, to re-use concepts from previous mechanisms to create new ones, or to generalize mechanisms to other scenarios. This makes the different research lines in Wi-Fi network planning and optimization progress in an isolated manner.This paper aims to address such a recurring problem by proposing a graph-based generic model for Wi-Fi utility computation in network planning scenarios, as well as providing a collection of scenario graphs which may be used to benchmark different planning and optimization approaches. Experiments are conducted to show the validity of the model and the significance of its features, along with its extensibility to other scenarios. | es_ES |
dc.description.sponsorship | This work has been partially funded by Projects PID2019-10 4855RB-I00/AEI/10.13039/501100011033 and PID2019-10412 9GB-I00/AEI/10.13039/501100011033, by Project SBPLY/19/180501/000171 of the Junta de Comunidades de Castilla-La Mancha and FEDER, by Projects UCeNet (CM/JIN/2019-031) and WiDAI (CM/JIN/2021-004) of the Comunidad de Madrid and University of Alcala, and by H2020-MSCA-RISE project 734922 - CONNECT. The publication is also part of project TED2021-131387B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union "NextGenerationEU"/PRTR and of project PID2021-123168NB-I00 funded by MCIN/AEI/10.13039/50110001103 3/FEDER, UE. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Alexandria University | es_ES |
dc.relation.ispartof | Alexandria Engineering Journal | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Wi-Fi networks | es_ES |
dc.subject | Graphs | es_ES |
dc.subject | Network modeling | es_ES |
dc.subject.classification | INGENIERÍA TELEMÁTICA | es_ES |
dc.title | IEEE 802.11 graph models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.aej.2022.12.016 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104129GB-I00/ES/TEORIA Y APLICACIONES DE CONFIGURACIONES DE PUNTOS Y REDES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123168NB-I00/ES/EVOLUCION DE LA RED DE ACCESO RADIO HACIA 6G PARA SERVICIOS MASIVOS Y DE BAJA LATENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/734922/EU/Combinatorics of Networks and Computation/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TED2021-131387B-I00//REDES VERDES: HACIA REDES 6G RESPETUOSAS CON EL MEDIO AMBIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//CM%2FJIN%2F2019-031//UCeNet/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//CM%2FJIN%2F2021-004/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ERC//734922/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F19%2F180501%2F000171/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PID2019-104855RB-I00//Plataforma de resiliencia basada en cloud para infraestructuras TI sanitarias/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PID2019-104129GB/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PID2021-123168NB-I00//Evolución de la red de acceso radio hacia 6G para servicios masivos y de baja latencia/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Gimenez-Guzman, JM.; Marsa-Maestre, I.; Cruz-Piris, L.; Orden, D.; Tejedor-Romero, M. (2023). IEEE 802.11 graph models. Alexandria Engineering Journal. 66:633-649. https://doi.org/10.1016/j.aej.2022.12.016 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.aej.2022.12.016 | es_ES |
dc.description.upvformatpinicio | 633 | es_ES |
dc.description.upvformatpfin | 649 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 66 | es_ES |
dc.relation.pasarela | S\489922 | es_ES |
dc.contributor.funder | Comunidad de Madrid | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |