dc.contributor.author |
Conejero, J. Alberto
|
es_ES |
dc.contributor.author |
Falcó, Antonio
|
es_ES |
dc.contributor.author |
Mora-Jiménez, María
|
es_ES |
dc.date.accessioned |
2024-06-10T18:24:08Z |
|
dc.date.available |
2024-06-10T18:24:08Z |
|
dc.date.issued |
2023 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/204954 |
|
dc.description.abstract |
[EN] Algorithms that use tensors are increasingly important due to the goodness of this operation when performing calculations with large amounts of data. Among them, we find the algorithms that search for the solution of a linear system in separated form, where the Greedy Rank-One Update method stands out, the starting point of the famous PGD family (from its acronym, Proper Generalized Decomposition).
When the matrices of these systems have the particular structure of a Laplacian-type matrix, the convergence of the previous methods is faster and more accurate. The Laplacian Decomposition Algorithm calculates the Laplacian matrix that best approximates a given square matrix. When the residue of this approximation is small, we will be able to solve the linear system associated with a Laplacian-type matrix and thus obtain an approximation of the solution of the original system, with a lower computational cost.
In this paper we prove that the discretization of a general Partial Differential Equation of the second order can be written as a linear system with a Laplacian-type matrix. |
es_ES |
dc.description.sponsorship |
J. A. Conejero acknowledges funding from grant PID2021-124618NB-C21, funded by MCIN/AEI/ 10.13039/501100011033, and by ERDF: A way of making Europe , by the European Union ; M. Mora-Jimenez was supported by the Generalitat Valenciana and the European Social ¿ Fund under grant number ACIF/2020/269; A. Falco was supported by the MICIN grant number ¿
RTI2018-093521-B-C32 and Universidad CEU Cardenal Herrera under grant number INDI22/15 |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
American Institute of Mathematical Sciences |
es_ES |
dc.relation.ispartof |
AIMS Mathematics |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Tensor-based algorithms |
es_ES |
dc.subject |
Rank-one tensors |
es_ES |
dc.subject |
Linear Systems |
es_ES |
dc.subject |
Laplacian-like matrices |
es_ES |
dc.subject |
Partial Differential Equations |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
A pre-processing procedure for the implementation of the greedy rank-one algorithm to solve high-dimensional linear systems |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3934/math.20231308 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093521-B-C32/ES/GEOMETRIA Y TOPOLOGIA DE LOS MODELOS DE ORDEN REDUCIDO: APLICACIONES EN ARQUITECTURA/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124618NB-C21/ES/HACIA SENSADO Y PROCESADO DE SEÑAL TODO OPTICO USANDO OPTOMECANICA DE CAVIDADES Y MOLECULAR: DESDE PEINES OPTOMECANICOS A ESPECTROSCOPIA RAMAN EN CHIPS DE SILICIO/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2020%2F269//AYUDA PREDOCTORAL GVA-MORA JIMENEZ. PROYECTO: ANALISIS NUMERICO DE ALGORITMOS DE OPTIMIZACION BASADOS EN ESCOMPOSICIONES TENSORIALES/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//INDI22%2F15/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica |
es_ES |
dc.description.bibliographicCitation |
Conejero, JA.; Falcó, A.; Mora-Jiménez, M. (2023). A pre-processing procedure for the implementation of the greedy rank-one algorithm to solve high-dimensional linear systems. AIMS Mathematics. 8(11):25633-25653. https://doi.org/10.3934/math.20231308 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.3934/math.20231308 |
es_ES |
dc.description.upvformatpinicio |
25633 |
es_ES |
dc.description.upvformatpfin |
25653 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
8 |
es_ES |
dc.description.issue |
11 |
es_ES |
dc.identifier.eissn |
2473-6988 |
es_ES |
dc.relation.pasarela |
S\496476 |
es_ES |
dc.contributor.funder |
GENERALITAT VALENCIANA |
es_ES |
dc.contributor.funder |
AGENCIA ESTATAL DE INVESTIGACION |
es_ES |
dc.contributor.funder |
Universidad CEU Cardenal Herrera |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.subject.ods |
04.- Garantizar una educación de calidad inclusiva y equitativa, y promover las oportunidades de aprendizaje permanente para todos |
es_ES |