- -

A pre-processing procedure for the implementation of the greedy rank-one algorithm to solve high-dimensional linear systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A pre-processing procedure for the implementation of the greedy rank-one algorithm to solve high-dimensional linear systems

Show simple item record

Files in this item

dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Falcó, Antonio es_ES
dc.contributor.author Mora-Jiménez, María es_ES
dc.date.accessioned 2024-06-10T18:24:08Z
dc.date.available 2024-06-10T18:24:08Z
dc.date.issued 2023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204954
dc.description.abstract [EN] Algorithms that use tensors are increasingly important due to the goodness of this operation when performing calculations with large amounts of data. Among them, we find the algorithms that search for the solution of a linear system in separated form, where the Greedy Rank-One Update method stands out, the starting point of the famous PGD family (from its acronym, Proper Generalized Decomposition). When the matrices of these systems have the particular structure of a Laplacian-type matrix, the convergence of the previous methods is faster and more accurate. The Laplacian Decomposition Algorithm calculates the Laplacian matrix that best approximates a given square matrix. When the residue of this approximation is small, we will be able to solve the linear system associated with a Laplacian-type matrix and thus obtain an approximation of the solution of the original system, with a lower computational cost. In this paper we prove that the discretization of a general Partial Differential Equation of the second order can be written as a linear system with a Laplacian-type matrix. es_ES
dc.description.sponsorship J. A. Conejero acknowledges funding from grant PID2021-124618NB-C21, funded by MCIN/AEI/ 10.13039/501100011033, and by ERDF: A way of making Europe , by the European Union ; M. Mora-Jimenez was supported by the Generalitat Valenciana and the European Social ¿ Fund under grant number ACIF/2020/269; A. Falco was supported by the MICIN grant number ¿ RTI2018-093521-B-C32 and Universidad CEU Cardenal Herrera under grant number INDI22/15 es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Mathematical Sciences es_ES
dc.relation.ispartof AIMS Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Tensor-based algorithms es_ES
dc.subject Rank-one tensors es_ES
dc.subject Linear Systems es_ES
dc.subject Laplacian-like matrices es_ES
dc.subject Partial Differential Equations es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A pre-processing procedure for the implementation of the greedy rank-one algorithm to solve high-dimensional linear systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/math.20231308 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093521-B-C32/ES/GEOMETRIA Y TOPOLOGIA DE LOS MODELOS DE ORDEN REDUCIDO: APLICACIONES EN ARQUITECTURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124618NB-C21/ES/HACIA SENSADO Y PROCESADO DE SEÑAL TODO OPTICO USANDO OPTOMECANICA DE CAVIDADES Y MOLECULAR: DESDE PEINES OPTOMECANICOS A ESPECTROSCOPIA RAMAN EN CHIPS DE SILICIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2020%2F269//AYUDA PREDOCTORAL GVA-MORA JIMENEZ. PROYECTO: ANALISIS NUMERICO DE ALGORITMOS DE OPTIMIZACION BASADOS EN ESCOMPOSICIONES TENSORIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//INDI22%2F15/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Conejero, JA.; Falcó, A.; Mora-Jiménez, M. (2023). A pre-processing procedure for the implementation of the greedy rank-one algorithm to solve high-dimensional linear systems. AIMS Mathematics. 8(11):25633-25653. https://doi.org/10.3934/math.20231308 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/math.20231308 es_ES
dc.description.upvformatpinicio 25633 es_ES
dc.description.upvformatpfin 25653 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2473-6988 es_ES
dc.relation.pasarela S\496476 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universidad CEU Cardenal Herrera es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.subject.ods 04.- Garantizar una educación de calidad inclusiva y equitativa, y promover las oportunidades de aprendizaje permanente para todos es_ES


This item appears in the following Collection(s)

Show simple item record