- -

Adaptive ECMS based on speed forecasting for the control of a heavy-duty fuel cell vehicle for real-world driving

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adaptive ECMS based on speed forecasting for the control of a heavy-duty fuel cell vehicle for real-world driving

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Piras, M. es_ES
dc.contributor.author De Bellis, V. es_ES
dc.contributor.author Malfi, E. es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author López-Juárez, Marcos es_ES
dc.date.accessioned 2024-06-10T18:24:16Z
dc.date.available 2024-06-10T18:24:16Z
dc.date.issued 2023-08-01 es_ES
dc.identifier.issn 0196-8904 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204960
dc.description.abstract [EN] Aiming at reducing pollutant emissions, hydrogen and fuel cell hybrid electric vehicles (FCVs) represent a promising technological solution. In this scenario, this paper proposes an adaptive energy management strategy (A-EMS) based on speed forecasting for a heavy-duty FCV, in order to achieve stable battery charge sustenance in realistic driving conditions. A validated and optimized fuel cell system model has been integrated into a complete vehicle model developed in the GT-Suite environment. A short-term velocity prediction layer based on a long short term memory (LSTM) neural network has been built in the A-EMS framework. The network has been trained and tested with realistic driving data simulated by GT-Real Drive for routes of the Trans-European Transport Network. The vehicle speed prevision has been realized over different forecasting horizons (5, 10, and 20 s). The adaptive equivalent consumption minimization strategy (A-ECMS) combined with short-term vehicle speed prediction is the A-EMS core algorithm of the presented work. Its results are here compared with the standard ECMS (S-ECMS) for four different driving cycles, including both standardized (HDDT) and realistic driving profiles. Three different European routes, with varying characteristics and from different countries, have been selected to test the proposed strategy in various conditions. The short-term prediction layer achieves satisfactory forecasting accuracy, with a RMSE ranging from 1.76 km/h to 13.37 km/h. The A-ECMS provides an improved by an order of magnitude battery charge sustenance, evaluated in terms of maximum battery state of charge (SoC) variation and fluctuation degree, with a hydrogen consumption increase ranging from 3.76% to 11.40% compared to the S-ECMS, for which the driving cycle is supposed to be known beforehand. As an example, in the HDDT cycle, the absolute maximum SoC variation and its fluctuation degree are lowered by about 76% and 79%, respectively. In conclusion, the proposed A-ECMS demonstrated that it is applicable for real driving conditions without prior knowledge of the driving cycle while improving battery charge sustaining for a FCV. es_ES
dc.description.sponsorship This study was funded by the Generalitat Valenciana (Conselleria d'Innovacio, Universitats, Ciencia i Societat Digital) as a part of the DE-FIANCE research project (CIPROM/2021/039) through the PROMETEO funding program. Funding for open access charge: CRUE-Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy Conversion and Management es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Hydrogen es_ES
dc.subject Proton exchange membrane fuel cell es_ES
dc.subject Real driving es_ES
dc.subject Neural network es_ES
dc.subject Fuel cell hybrid electric vehicle es_ES
dc.subject Adaptive energy management strategy es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Adaptive ECMS based on speed forecasting for the control of a heavy-duty fuel cell vehicle for real-world driving es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.enconman.2023.117178 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIPROM%2F2021%2F039//Definition of fuel cell powertrain architectures for the decarbonization of road freight transport supporting the hydrogen economy deployment / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Piras, M.; De Bellis, V.; Malfi, E.; Novella Rosa, R.; López-Juárez, M. (2023). Adaptive ECMS based on speed forecasting for the control of a heavy-duty fuel cell vehicle for real-world driving. Energy Conversion and Management. 289. https://doi.org/10.1016/j.enconman.2023.117178 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.enconman.2023.117178 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 289 es_ES
dc.relation.pasarela S\503345 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem