- -

Graph Regularization Methods in Soft Detector Fusion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graph Regularization Methods in Soft Detector Fusion

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salazar Afanador, Addisson es_ES
dc.contributor.author Safont, Gonzalo es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.contributor.author Vidal, Enrique es_ES
dc.date.accessioned 2024-06-11T18:19:18Z
dc.date.available 2024-06-11T18:19:18Z
dc.date.issued 2023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205016
dc.description.abstract [EN] This paper presents a theoretical derivation of two new graph-based regularization methods for fusing the individual results of multiple detectors (two-class classifiers). The proposed approach considers linear combination of the individual detector statistics and its extension to a general nonlinear fusion method known as ¿-integration. A cost function that includes a mean-square error and a regularization term is minimized. The inclusion of the regularization term, which is based on graph signal processing, reduces the dispersion of the fused statistics, and thus improves the separation between the fused statistics corresponding to every detection hypothesis. The proposed methods (linear and non-linear regularized ¿-integration) are experimentally compared with commonly used classification methods (random forest, linear and quadratic discriminant analysis, and naive Bayes) and competitive fusion methods (Dempster-Shafer, copulas, behavior knowledge space, independent component analysis mixture modeling, majority voting, the mean, and ¿-integration). Two challenging problems were approached using simulated and electroencephalographic data, respectively: (i) detection of ultrasound pulses buried in high noise, and (ii) detection of changes in electroencephalographic signals for neuropsychological test staging. An experimental convergence analysis of the proposed regularized method for these two applications is included. Besides, the proposed methods were tested using several benchmark datasets. Results on the basis of classification accuracy, kappa index, F1 score, and receiver operating characteristic curve analysis demonstrate the superiority of the proposed regularized fusion methods. es_ES
dc.description.sponsorship This work was supported in part by the European Commission under Grant HORIZON-MSCA-2021-DN, in part by Generalitat Valenciana under Grant CIPROM/2022/20, and in part by the Universitat Politècnica de València. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Graph regularization es_ES
dc.subject Detector fusion es_ES
dc.subject Alpha integration es_ES
dc.subject Graph signal processing es_ES
dc.subject Electroencephalographic signal processing es_ES
dc.subject Ultrasounds es_ES
dc.subject Two-class classification es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Graph Regularization Methods in Soft Detector Fusion es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2023.3344776 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIPROM%2F2022%2F20//COMPUTACION Y TRATAMIENTO DE LA SEÑAL PARA LA SOCIEDAD Y LA INDUSTRIA DIGITALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COMISION DE LAS COMUNIDADES EUROPEA//HORIZON-MSCA-2021-DN//Active reduction of noise transmitted into and from enclousures through encapsulated estructures/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Salazar Afanador, A.; Safont, G.; Vergara Domínguez, L.; Vidal, E. (2023). Graph Regularization Methods in Soft Detector Fusion. IEEE Access. 11:144747-144759. https://doi.org/10.1109/ACCESS.2023.3344776 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2023.3344776 es_ES
dc.description.upvformatpinicio 144747 es_ES
dc.description.upvformatpfin 144759 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\507676 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
upv.costeAPC 1815 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem