Mostrar el registro sencillo del ítem
dc.contributor.author | Llanes-Jurado, José | es_ES |
dc.contributor.author | Lucia A. Carrasco-Ribelles | es_ES |
dc.contributor.author | Alcañiz Raya, Mariano Luis | es_ES |
dc.contributor.author | Soria-Olivas, Emilio | es_ES |
dc.contributor.author | Marín-Morales, Javier | es_ES |
dc.date.accessioned | 2024-06-11T18:19:27Z | |
dc.date.available | 2024-06-11T18:19:27Z | |
dc.date.issued | 2023-11-15 | es_ES |
dc.identifier.issn | 0957-4174 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205021 | |
dc.description.abstract | [EN] Researchers increasingly use electrodermal activity (EDA) to assess emotional states, developing novel appli-cations that include disorder recognition, adaptive therapy, and mental health monitoring systems. However, movement can produce major artifacts that affect EDA signals, especially in uncontrolled environments where users can freely walk and move their hands. This work develops a fully automatic pipeline for recognizing and correcting motion EDA artifacts, exploring the suitability of long short-term memory (LSTM) and convolutional neural networks (CNN). First, we constructed the EDABE dataset, collecting 74h EDA signals from 43 subjects collected during an immersive virtual reality task and manually corrected by two experts to provide a ground truth. The LSTM-1D CNN model produces the best performance recognizing 72% of artifacts with 88% accuracy, outperforming two state-of-the-art methods in sensitivity, AUC and kappa, in the test set. Subsequently, we developed a polynomial regression model to correct the detected artifacts automatically. Evaluation of the complete pipeline demonstrates that the automatically and manually corrected signals do not present differences in the phasic components, supporting their use in place of expert manual correction. In addition, the EDABE dataset represents the first public benchmark to compare the performance of EDA correction models. This work provides a pipeline to automatically correct EDA artifacts that can be used in uncontrolled conditions. This tool will allow to development of intelligent devices that recognize human emotional states without human intervention. | es_ES |
dc.description.sponsorship | This work was supported by the European Commission [RHUMBO H2020-MSCA-ITN-2018-813234] ; the Generalitat Valenciana, Spain [REBRAND PROMETEU/2019/105] ; the MCIN/AEI, Spain [PID2021-127946OB-I00] ; and the Universitat Politecnica de Valencia, Spain [PAID-10-20]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Expert Systems with Applications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Artifact recognition | es_ES |
dc.subject | Electrodermal activity | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Statistical learning | es_ES |
dc.subject | Galvanic skin response | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Automatic artifact recognition and correction for electrodermal activity based on LSTM-CNN models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.eswa.2023.120581 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127946OB-I00/ES/APRENDIZAJE PROFUNDO PARA LA DETECCION DE ANOMALIAS EN DATOS NO ESTRUCTURADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-20//SINTESIS Y CARACTERIZACIÓN DE SEMICONDUCTORES V: SnS2 CON BANDA INTERMEDIA PARA APLICACIONES FOTOCATALITICS Y FOTOVOLTAICAS AVANZADAS / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/813234/EU/Modelling and pRedicting Human decision-making Using Measures of subconscious Brain processes through mixed reality interfaces and biOmetric signals/RHUMBO | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F105//REBRAND (MIXED REALITY AND BRAIN DECISION)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Llanes-Jurado, J.; Lucia A. Carrasco-Ribelles; Alcañiz Raya, ML.; Soria-Olivas, E.; Marín-Morales, J. (2023). Automatic artifact recognition and correction for electrodermal activity based on LSTM-CNN models. Expert Systems with Applications. 230. https://doi.org/10.1016/j.eswa.2023.120581 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.eswa.2023.120581 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 230 | es_ES |
dc.relation.pasarela | S\494651 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |