- -

Automatic artifact recognition and correction for electrodermal activity based on LSTM-CNN models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic artifact recognition and correction for electrodermal activity based on LSTM-CNN models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llanes-Jurado, José es_ES
dc.contributor.author Lucia A. Carrasco-Ribelles es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author Soria-Olivas, Emilio es_ES
dc.contributor.author Marín-Morales, Javier es_ES
dc.date.accessioned 2024-06-11T18:19:27Z
dc.date.available 2024-06-11T18:19:27Z
dc.date.issued 2023-11-15 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205021
dc.description.abstract [EN] Researchers increasingly use electrodermal activity (EDA) to assess emotional states, developing novel appli-cations that include disorder recognition, adaptive therapy, and mental health monitoring systems. However, movement can produce major artifacts that affect EDA signals, especially in uncontrolled environments where users can freely walk and move their hands. This work develops a fully automatic pipeline for recognizing and correcting motion EDA artifacts, exploring the suitability of long short-term memory (LSTM) and convolutional neural networks (CNN). First, we constructed the EDABE dataset, collecting 74h EDA signals from 43 subjects collected during an immersive virtual reality task and manually corrected by two experts to provide a ground truth. The LSTM-1D CNN model produces the best performance recognizing 72% of artifacts with 88% accuracy, outperforming two state-of-the-art methods in sensitivity, AUC and kappa, in the test set. Subsequently, we developed a polynomial regression model to correct the detected artifacts automatically. Evaluation of the complete pipeline demonstrates that the automatically and manually corrected signals do not present differences in the phasic components, supporting their use in place of expert manual correction. In addition, the EDABE dataset represents the first public benchmark to compare the performance of EDA correction models. This work provides a pipeline to automatically correct EDA artifacts that can be used in uncontrolled conditions. This tool will allow to development of intelligent devices that recognize human emotional states without human intervention. es_ES
dc.description.sponsorship This work was supported by the European Commission [RHUMBO H2020-MSCA-ITN-2018-813234] ; the Generalitat Valenciana, Spain [REBRAND PROMETEU/2019/105] ; the MCIN/AEI, Spain [PID2021-127946OB-I00] ; and the Universitat Politecnica de Valencia, Spain [PAID-10-20]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Artifact recognition es_ES
dc.subject Electrodermal activity es_ES
dc.subject Deep learning es_ES
dc.subject Machine learning es_ES
dc.subject Statistical learning es_ES
dc.subject Galvanic skin response es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Automatic artifact recognition and correction for electrodermal activity based on LSTM-CNN models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2023.120581 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127946OB-I00/ES/APRENDIZAJE PROFUNDO PARA LA DETECCION DE ANOMALIAS EN DATOS NO ESTRUCTURADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-20//SINTESIS Y CARACTERIZACIÓN DE SEMICONDUCTORES V: SnS2 CON BANDA INTERMEDIA PARA APLICACIONES FOTOCATALITICS Y FOTOVOLTAICAS AVANZADAS / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/813234/EU/Modelling and pRedicting Human decision-making Using Measures of subconscious Brain processes through mixed reality interfaces and biOmetric signals/RHUMBO es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F105//REBRAND (MIXED REALITY AND BRAIN DECISION)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Llanes-Jurado, J.; Lucia A. Carrasco-Ribelles; Alcañiz Raya, ML.; Soria-Olivas, E.; Marín-Morales, J. (2023). Automatic artifact recognition and correction for electrodermal activity based on LSTM-CNN models. Expert Systems with Applications. 230. https://doi.org/10.1016/j.eswa.2023.120581 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2023.120581 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 230 es_ES
dc.relation.pasarela S\494651 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem