- -

Predicting Volunteers' Decisions to Stay in or Quit an NGO Using Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predicting Volunteers' Decisions to Stay in or Quit an NGO Using Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de-Miguel-Molina, Blanca es_ES
dc.contributor.author Boix-Domenech, Rafael es_ES
dc.contributor.author Martínez-Villanueva, Gema es_ES
dc.contributor.author de-Miguel-Molina, María es_ES
dc.date.accessioned 2024-06-12T18:19:00Z
dc.date.available 2024-06-12T18:19:00Z
dc.date.issued 2024-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205087
dc.description.abstract [EN] This paper uses non-traditional approaches to predict why volunteers remain in or quit a non-governmental organisation position. A questionnaire featuring 55 predictors was conducted via an online survey mechanism from March to May 2021. A total of 250 responses were received. The subsequent data analysis compared logistic regression and artificial neural network results, using machine-learning interpreters to explain the features which determined decisions. The results indicate greater accuracy for neural networks. According to the logistic regression results, intrinsic motivation, volunteering through an NGO and the age of volunteers influenced the intention to remain. Moreover, NGOs that offered online volunteering opportunities during the COVID-19 pandemic had higher rates of intention to remain. However, the neural network analysis, performed using the Local Interpretable Model-Agnostic Explanations (LIME) method, indicated the need to consider different predictors to those identified by the logistic regression. The LIME method also enables the individualisation of the explanations of predictions, indicating the importance of considering the role of volunteers' feelings in both quit and remain decisions, which is something that is not provided by traditional methods such as logistic regression. Furthermore, the LIME approach demonstrates that NGOs must address both volunteer management and experience to retain volunteers. Nonetheless, volunteer management is more critical to stop volunteers quitting, suggesting that volunteer integration is crucial. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Voluntas (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject NGOs es_ES
dc.subject Volunteer management es_ES
dc.subject Volunteer profile es_ES
dc.subject Volunteer experience es_ES
dc.subject Artificial neural networks es_ES
dc.subject Garson es_ES
dc.subject LIME es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Predicting Volunteers' Decisions to Stay in or Quit an NGO Using Neural Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11266-023-00590-y es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation De-Miguel-Molina, B.; Boix-Domenech, R.; Martínez-Villanueva, G.; De-Miguel-Molina, M. (2024). Predicting Volunteers' Decisions to Stay in or Quit an NGO Using Neural Networks. Voluntas (Online). 35(2):277-291. https://doi.org/10.1007/s11266-023-00590-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11266-023-00590-y es_ES
dc.description.upvformatpinicio 277 es_ES
dc.description.upvformatpfin 291 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1573-7888 es_ES
dc.relation.pasarela S\497234 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.subject.ods 10.- Reducir las desigualdades entre países y dentro de ellos es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem