- -

FPGA-Microprocessor Based Sensor for Faults Detection in Induction Motors Using Time-Frequency and Machine Learning Methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

FPGA-Microprocessor Based Sensor for Faults Detection in Induction Motors Using Time-Frequency and Machine Learning Methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Osornio-Rios, Roque Alfredo es_ES
dc.contributor.author Cueva-Perez, Isaias es_ES
dc.contributor.author Alvarado-Hernandez, Alvaro Ivan es_ES
dc.contributor.author Dunai, Larisa es_ES
dc.contributor.author Zamudio-Ramirez, Israel es_ES
dc.contributor.author Antonino-Daviu, José Alfonso es_ES
dc.date.accessioned 2024-06-12T18:19:11Z
dc.date.available 2024-06-12T18:19:11Z
dc.date.issued 2024-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205093
dc.description.abstract [EN] Induction motors (IM) play a fundamental role in the industrial sector because they are robust, efficient, low-cost machines. Changes in the environment, installation errors, or modifications to working conditions can generate faults in induction motors. Trend on IM fault detection is focused on the design techniques and sensors capable of evaluating multiple faults with various signals with non-invasive analysis. The methodology is based on processing electric current signals by applying the short-time Fourier transform (STFT). Additionally, the computation of the mean and standard deviation of infrared thermograms is proposed as main indicators. The proposed system combines both parameters by means of Support Vector Machine and K-nearest-neighbor classi-ficators. The development of the diagnostic system was done with digital hardware implemen-tations using a Xilinx PYNQ Z2 card that integrates an FPGA with a microprocessor, thus taking advantage of the acquisition and processing of digital signals and images in hardware. The pro-posed method has proved to be effective for the classification of healthy (HLT), misalignment (MAMT), unbalance (UNB), damaged bearing (BDF), and broken rotor bar (BRB) faults with an accuracy close to 99%. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Induction motors es_ES
dc.subject FPGA Sensor, Machine learning es_ES
dc.subject Thermographic images es_ES
dc.subject Time domain es_ES
dc.subject Time-frequency. es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title FPGA-Microprocessor Based Sensor for Faults Detection in Induction Motors Using Time-Frequency and Machine Learning Methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s24082653 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122343OB-I00/ES/SENSORES INTELIGENTES BASADOS EN EL ANALISIS AVANZADO DE CORRIENTES Y FLUJO DE DISPERSION PARA LA MONITORIZACION FIABLE DE LA CONDICION DE MOTORES ELECTRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Osornio-Rios, RA.; Cueva-Perez, I.; Alvarado-Hernandez, AI.; Dunai, L.; Zamudio-Ramirez, I.; Antonino-Daviu, JA. (2024). FPGA-Microprocessor Based Sensor for Faults Detection in Induction Motors Using Time-Frequency and Machine Learning Methods. Sensors. 24(8). https://doi.org/10.3390/s24082653 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s24082653 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 38676270 es_ES
dc.identifier.pmcid PMC11054184 es_ES
dc.relation.pasarela S\514516 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem