- -

Analysis and prediction of injury severity in single micromobility crashes with Random Forest

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis and prediction of injury severity in single micromobility crashes with Random Forest

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanjurjo-de-No, Almudena es_ES
dc.contributor.author Pérez Zuriaga, Ana María es_ES
dc.contributor.author García García, Alfredo es_ES
dc.date.accessioned 2024-06-12T18:19:18Z
dc.date.available 2024-06-12T18:19:18Z
dc.date.issued 2023-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205096
dc.description.abstract [EN] Urban micromobility represents a significant shift towards sustainable cities, underscoring the paramount importance of its safety. With the surge in micromobility adoption, collisions involving micromobility devices, such as bicycles and e-scooters, have surged in recent years. The second most common crash type involving these vehicles is one that only involves a micromobility vehicle (single micromobility crashes). This study analyzed 6030 single micromobility crashes that occurred in Spanish urban areas from 2016 to 2020. The Random Forest method-ology was applied to create a classification model for the purpose of characterizing these crashes, predicting their injury severity, and identifying the primary influencing factors. To address the issue of imbalanced data, resulting from the relatively smaller dataset of fatal and seriously injured crashes compared to slightly injured ones, the Synthetic Minority Oversampling Technique (SMOTE) was applied. The results indicate that certain behaviors, such as not wearing a helmet, riding for leisure, and instances of speeding violations, have the potential to increase injury severity. Additionally, crashes occurring at intersections or at cycle lanes with bad pavement conditions are likely to result in more severe outcomes. Furthermore, the concurrent presence of various other factors also contributes to an escalation in crash injury severity. These findings have the potential to provide valuable insights to authorities, assisting them in the decision-making process to enhance micromobility safety and thereby promoting the creation of more equitable and sustainable urban environments. es_ES
dc.description.sponsorship This research is part of the research project PID2019-111744RB-I00, funded by MCIN/AEI/10.13039/501100011033. Likewise, this research has been partially funded by the European Union-NextGenerationEU (RD 289/2021) through the "Margarita Salas" grant awarded to Almudena Sanjurjo (UP2021-035) , a researcher at the Univeridad Polite cnica de Madrid (UPM) to support her stay at the Universitat Polite cnica de Valencia (UPV) . Finally, the authors would like to also thank to the Direcci on General de Trafico (DGT) for providing the databases. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Heliyon es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Injury severity es_ES
dc.subject Micromobility es_ES
dc.subject Random Forest es_ES
dc.subject Road safety es_ES
dc.subject Urban area es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Analysis and prediction of injury severity in single micromobility crashes with Random Forest es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.heliyon.2023.e23062 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111744RB-I00/ES/EVALUACION DE LA SEGURIDAD VIAL DE LA MICROMOVILIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPM//UP2021-035/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Sanjurjo-De-No, A.; Pérez Zuriaga, AM.; García García, A. (2023). Analysis and prediction of injury severity in single micromobility crashes with Random Forest. Heliyon. 9(12). https://doi.org/10.1016/j.heliyon.2023.e23062 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.heliyon.2023.e23062 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2405-8440 es_ES
dc.identifier.pmid 38144294 es_ES
dc.identifier.pmcid PMC10746459 es_ES
dc.relation.pasarela S\504788 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universidad Politécnica de Madrid es_ES
upv.costeAPC 2000 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem