- -

An Online Attachment Style Recognition System Based on Voice and Machine Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Online Attachment Style Recognition System Based on Voice and Machine Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez-Zaragozá, Lucía es_ES
dc.contributor.author Marín-Morales, Javier es_ES
dc.contributor.author Parra Vargas, Elena es_ES
dc.contributor.author Chicchi Giglioli, Irene Alice es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.date.accessioned 2024-06-13T18:17:13Z
dc.date.available 2024-06-13T18:17:13Z
dc.date.issued 2023-11 es_ES
dc.identifier.issn 2168-2194 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205131
dc.description.abstract [EN] Attachment styles are known to have significant associations with mental and physical health. Specifically, insecure attachment leads individuals to higher risk of suffering from mental disorders and chronic diseases. The aim of this study is to develop an attachment recognition model that can distinguish between secure and insecure attachment styles from voice recordings, exploring the importance of acoustic features while also evaluating gender differences. A total of 199 participants recorded their responses to four open questions intended to trigger their attachment system using a web-based interrogation system. The recordings were processed to obtain the standard acoustic feature set eGeMAPS, and recursive feature elimination was applied to select the relevant features. Different supervised machine learning models were trained to recognize attachment styles using both gender-dependent and gender-independent approaches. The gender-independent model achieved a test accuracy of 58.88%, whereas the gender-dependent models obtained 63.88% and 83.63% test accuracy for women and men respectively, indicating a strong influence of gender on attachment style recognition and the need to consider them separately in further studies. These results also demonstrate the potential of acoustic properties for remote assessment of attachment style, enabling fast and objective identification of this health risk factor, and thus supporting the implementation of large-scale mobile screening systems. es_ES
dc.description.sponsorship This work was supported in part by the Generalitat Valenciana under Grant ACIF/2021/187, and its funded Project Mixed reality and brain decision -REBRAND under Grant PROMETEO/2019/105, and in part by the Universitat Politecnica de Valencia under Grants PAID-10-20 and PAID-PD-22. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Journal of Biomedical and Health Informatics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Acoustic features es_ES
dc.subject Artificial intelligence es_ES
dc.subject Attachment es_ES
dc.subject Gender es_ES
dc.subject Psychometrics es_ES
dc.subject Speech analysis es_ES
dc.subject Statistical machine learning es_ES
dc.subject Voice es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title An Online Attachment Style Recognition System Based on Voice and Machine Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/JBHI.2023.3304369 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//PAID-10-20//Reconocimiento emocional utilizando biomarcadores e inteligencia artificial en entornos de realidad virtual/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2021%2F187//MODELIZACION DE BIOMARCADORES DE VOZ EN PSIQUIATRIA COMPUTACIONAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-PD-22/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F105//REBRAND (MIXED REALITY AND BRAIN DECISION)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Gómez-Zaragozá, L.; Marín-Morales, J.; Parra Vargas, E.; Chicchi Giglioli, IA.; Alcañiz Raya, ML. (2023). An Online Attachment Style Recognition System Based on Voice and Machine Learning. IEEE Journal of Biomedical and Health Informatics. 27(11):5576-5587. https://doi.org/10.1109/JBHI.2023.3304369 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/JBHI.2023.3304369 es_ES
dc.description.upvformatpinicio 5576 es_ES
dc.description.upvformatpfin 5587 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 37566508 es_ES
dc.relation.pasarela S\502707 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem