- -

Evaluation of synthetic data generation for intelligent climate control in greenhouses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of synthetic data generation for intelligent climate control in greenhouses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morales-García, Juan es_ES
dc.contributor.author Bueno-Crespo, Andrés es_ES
dc.contributor.author Terroso-Saenz, Fernando es_ES
dc.contributor.author Arcas-Túnez, Francisco es_ES
dc.contributor.author Martínez-España, Raquel es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.date.accessioned 2024-06-13T18:17:53Z
dc.date.available 2024-06-13T18:17:53Z
dc.date.issued 2023-11 es_ES
dc.identifier.issn 0924-669X es_ES
dc.identifier.uri http://hdl.handle.net/10251/205157
dc.description.abstract [EN] We are witnessing the digitalization era, where artificial intelligence (AI)/machine learning (ML) models are mandatory to transform this data deluge into actionable information. However, these models require large, high-quality datasets to predict high reliability/accuracy. Even with the maturity of Internet of Things (IoT) systems, there are still numerous scenarios where there is not enough quantity and quality of data to successfully develop AI/ML-based applications that can meet market expectations. One such scenario is precision agriculture, where operational data generation is costly and unreliable due to the extreme and remote conditions of numerous crops. In this paper, we investigated the generation of synthetic data as a method to improve predictions of AI/ML models in precision agriculture. We used generative adversarial networks (GANs) to generate synthetic temperature data for a greenhouse located in Murcia (Spain). The results reveal that the use of synthetic data significantly improves the accuracy of the AI/ML models targeted compared to using only ground truth data. es_ES
dc.description.sponsorship This work is derived from R&D projects RTC2019-007159-5, as well as the Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033, FSE invest in your future and ERDF A way of making Europe and the grant PID2020-112827GBI00 funded by MCIN/AEI/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Applied Intelligence es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Deep learning es_ES
dc.subject Synthetic time series data generation es_ES
dc.subject Generative adversarial networks es_ES
dc.subject Time series forecasting es_ES
dc.title Evaluation of synthetic data generation for intelligent climate control in greenhouses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10489-023-04783-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112827GB-I00/ES/SISTEMA INTELIGENTE MULTIMODAL BASADO EN CROWDSENSING PARA UN SERVICIO DE PREDICCION DE PROBLEMAS SOCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Morales-García, J.; Bueno-Crespo, A.; Terroso-Saenz, F.; Arcas-Túnez, F.; Martínez-España, R.; Cecilia-Canales, JM. (2023). Evaluation of synthetic data generation for intelligent climate control in greenhouses. Applied Intelligence. 53(21):24765-24781. https://doi.org/10.1007/s10489-023-04783-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10489-023-04783-2 es_ES
dc.description.upvformatpinicio 24765 es_ES
dc.description.upvformatpfin 24781 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 21 es_ES
dc.relation.pasarela S\498093 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem