Mostrar el registro sencillo del ítem
dc.contributor.author | Morales-García, Juan | es_ES |
dc.contributor.author | Bueno-Crespo, Andrés | es_ES |
dc.contributor.author | Terroso-Saenz, Fernando | es_ES |
dc.contributor.author | Arcas-Túnez, Francisco | es_ES |
dc.contributor.author | Martínez-España, Raquel | es_ES |
dc.contributor.author | Cecilia-Canales, José María | es_ES |
dc.date.accessioned | 2024-06-13T18:17:53Z | |
dc.date.available | 2024-06-13T18:17:53Z | |
dc.date.issued | 2023-11 | es_ES |
dc.identifier.issn | 0924-669X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205157 | |
dc.description.abstract | [EN] We are witnessing the digitalization era, where artificial intelligence (AI)/machine learning (ML) models are mandatory to transform this data deluge into actionable information. However, these models require large, high-quality datasets to predict high reliability/accuracy. Even with the maturity of Internet of Things (IoT) systems, there are still numerous scenarios where there is not enough quantity and quality of data to successfully develop AI/ML-based applications that can meet market expectations. One such scenario is precision agriculture, where operational data generation is costly and unreliable due to the extreme and remote conditions of numerous crops. In this paper, we investigated the generation of synthetic data as a method to improve predictions of AI/ML models in precision agriculture. We used generative adversarial networks (GANs) to generate synthetic temperature data for a greenhouse located in Murcia (Spain). The results reveal that the use of synthetic data significantly improves the accuracy of the AI/ML models targeted compared to using only ground truth data. | es_ES |
dc.description.sponsorship | This work is derived from R&D projects RTC2019-007159-5, as well as the Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033, FSE invest in your future and ERDF A way of making Europe and the grant PID2020-112827GBI00 funded by MCIN/AEI/10.13039/501100011033. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Applied Intelligence | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Synthetic time series data generation | es_ES |
dc.subject | Generative adversarial networks | es_ES |
dc.subject | Time series forecasting | es_ES |
dc.title | Evaluation of synthetic data generation for intelligent climate control in greenhouses | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10489-023-04783-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112827GB-I00/ES/SISTEMA INTELIGENTE MULTIMODAL BASADO EN CROWDSENSING PARA UN SERVICIO DE PREDICCION DE PROBLEMAS SOCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Morales-García, J.; Bueno-Crespo, A.; Terroso-Saenz, F.; Arcas-Túnez, F.; Martínez-España, R.; Cecilia-Canales, JM. (2023). Evaluation of synthetic data generation for intelligent climate control in greenhouses. Applied Intelligence. 53(21):24765-24781. https://doi.org/10.1007/s10489-023-04783-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10489-023-04783-2 | es_ES |
dc.description.upvformatpinicio | 24765 | es_ES |
dc.description.upvformatpfin | 24781 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 21 | es_ES |
dc.relation.pasarela | S\498093 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |