Mostrar el registro sencillo del ítem
dc.contributor.author | Talens, J. B. | es_ES |
dc.contributor.author | Pelegri-Sebastia, Jose | es_ES |
dc.contributor.author | Sogorb Devesa, Tomás | es_ES |
dc.contributor.author | Ruiz, J. L. | es_ES |
dc.date.accessioned | 2024-06-19T18:07:54Z | |
dc.date.available | 2024-06-19T18:07:54Z | |
dc.date.issued | 2023-10-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205281 | |
dc.description.abstract | [EN] This research aims to develop a diagnostic tool that can quickly and accurately detect prostate cancer using electronic nose technology and a neural network trained on a dataset of urine samples from patients diagnosed with both prostate cancer and benign prostatic hyperplasia, which incorporates a unique data redundancy method. By analyzing signals from these samples, we were able to significantly reduce the number of unnecessary biopsies and improve the classification method, resulting in a recall rate of 91% for detecting prostate cancer. The goal is to make this technology widely available for use in primary care centers, to allow for rapid and non-invasive diagnoses. | es_ES |
dc.description.sponsorship | We would like to acknowledge the support of the Generalitat Valenciana Government (AICO/2016/046), Spain I+D+I Program in funding this research project. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BMC Medical Informatics and Decision Making | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Machine intelligence | es_ES |
dc.subject | E-Nose | es_ES |
dc.subject | MOOSY-32 | es_ES |
dc.subject | Prostate cancer | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Prostate cancer detection using e-nose and AI for high probability assessment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s12911-023-02312-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2016%2F046//SISTEMA OLFATIVO PARA APLICACIONES MEDICAS Y DE SALUD (SO-MAS)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Talens, JB.; Pelegri-Sebastia, J.; Sogorb Devesa, T.; Ruiz, JL. (2023). Prostate cancer detection using e-nose and AI for high probability assessment. BMC Medical Informatics and Decision Making. 23(1). https://doi.org/10.1186/s12911-023-02312-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s12911-023-02312-2 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1472-6947 | es_ES |
dc.identifier.pmid | 37803440 | es_ES |
dc.identifier.pmcid | PMC10559535 | es_ES |
dc.relation.pasarela | S\500648 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |