Mostrar el registro sencillo del ítem
dc.contributor.author | del Amor, Rocío | es_ES |
dc.contributor.author | Pérez-Cano, Jose | es_ES |
dc.contributor.author | López-Pérez, Miguel | es_ES |
dc.contributor.author | Terradez, Liria | es_ES |
dc.contributor.author | Aneiros-Fernandez, Jose | es_ES |
dc.contributor.author | Morales, Sandra | es_ES |
dc.contributor.author | Mateos, Javier | es_ES |
dc.contributor.author | Molina, Rafael | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2024-06-20T18:16:25Z | |
dc.date.available | 2024-06-20T18:16:25Z | |
dc.date.issued | 2023-11 | es_ES |
dc.identifier.issn | 0933-3657 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205299 | |
dc.description.abstract | [EN] Digital Pathology (DP) has experienced a significant growth in recent years and has become an essential tool for diagnosing and prognosis of tumors. The availability of Whole Slide Images (WSIs) and the implementation of Deep Learning (DL) algorithms have paved the way for the appearance of Artificial Intelligence (AI) systems that support the diagnosis process. These systems require extensive and varied data for their training to be successful. However, creating labeled datasets in histopathology is laborious and time-consuming. We have developed a crowdsourcing-multiple instance labeling/learning protocol that is applied to the creation and use of the CR-AI4SkIN dataset.2 CR-AI4SkIN contains 271 WSIs of 7 Cutaneous Spindle Cell (CSC) neoplasms with expert and non-expert labels at region and WSI levels. It is the first dataset of these types of neoplasms made available. The regions selected by the experts are used to learn an automatic extractor of Regions of Interest (ROIs) from WSIs. To produce the embedding of each WSI, the representations of patches within the ROIs are obtained using a contrastive learning method, and then combined. Finally, they are fed to a Gaussian process-based crowdsourcing classifier, which utilizes the noisy non-expert WSI labels. We validate our crowdsourcing-multiple instance learning method in the CR-AI4SkIN dataset, addressing a binary classification problem (malign vs. benign). The proposed method obtains an F1 score of 0.7911 on the test set, outperforming three widely used aggregation methods for crowdsourcing tasks. Furthermore, our crowdsourcing method also outperforms the supervised model with expert labels on the test set (F1-score = 0.6035). The promising results support the proposed crowdsourcing multiple instance learning annotation protocol. It also validates the automatic extraction of interest regions and the use of contrastive embedding and Gaussian process classification to perform crowdsourcing classification tasks. | es_ES |
dc.description.sponsorship | This work has received funding from the Spanish Ministry of Economy and Competitiveness through project PID2019-105142RB-C21 (AI4SKIN) and Spanish Ministry of Science and Innovation through project PID2022-140189OB-C22, from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under the grant agreement No. 860627 (CLARIFY) , grant B-TIC-324-UGR20 funded by Consejeria de Universidad, Investigacion e Innovacion (Junta de Andalucia) and by "ERDF A way of making Europe", and GVA through the project INNEST/2021/321 (SAMUEL) . The work of Rocio del Amor has been supported by the Spanish Ministry of Universities (FPU20/05263) . The work of Miguel Lopez Perez has been supported by the University of Granada postdoctoral program "Contrato Puente". The work of Sandra Morales has been co-funded by the Universitat Politecnica de Valencia through the program PAID-10-20.r Union's Framework Programme for Research and Innovation, under the grant agreement No. 860627 (CLARIFY) , grant B-TIC-324-UGR20 funded by Consejeria de Universidad, Investigacion e Innovacion (Junta de Andalucia) and by "ERDF A way of making Europe", and GVA through the project INNEST/2021/321 (SAMUEL) . The work of Rocio del Amor has been supported by the Spanish Ministry of Universities (FPU20/05263) . The work of Miguel Lopez Perez has been supported by the University of Granada postdoctoral program "Contrato Puente". The work of Sandra Morales has been co-funded by the Universitat Politecnica de Valencia through the program PAID-10-20. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Artificial Intelligence in Medicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Histopathology | es_ES |
dc.subject | Skin cancer | es_ES |
dc.subject | Gaussian processes | es_ES |
dc.subject | Multiple instance learning | es_ES |
dc.subject | Crowdsourcing | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The CR-AI4SkIN dataset | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.artmed.2023.102686 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-140189OB-C22/ES/ACERCANDO LA PATOLOGIA COMPUTACIONAL A LA PRACTICA CLINICA: UN SISTEMA DE IA PARA EL DIAGNOSTICO DE TUMORES CUTANEOS PRIMARIOS Y SECUNDARIOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/860627/EU/CLoud ARtificial Intelligence For pathologY/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-20/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//B-TIC-324-UGR20/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//INNEST%2F2021%2F321/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MIU//FPU20%2F05263/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Del Amor, R.; Pérez-Cano, J.; López-Pérez, M.; Terradez, L.; Aneiros-Fernandez, J.; Morales, S.; Mateos, J.... (2023). Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The CR-AI4SkIN dataset. Artificial Intelligence in Medicine. 145. https://doi.org/10.1016/j.artmed.2023.102686 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.artmed.2023.102686 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 145 | es_ES |
dc.identifier.pmid | 37925214 | es_ES |
dc.relation.pasarela | S\505124 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universidad de Granada | es_ES |
dc.contributor.funder | Ministerio de Universidades | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |