- -

Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The CR-AI4SkIN dataset

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The CR-AI4SkIN dataset

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author del Amor, Rocío es_ES
dc.contributor.author Pérez-Cano, Jose es_ES
dc.contributor.author López-Pérez, Miguel es_ES
dc.contributor.author Terradez, Liria es_ES
dc.contributor.author Aneiros-Fernandez, Jose es_ES
dc.contributor.author Morales, Sandra es_ES
dc.contributor.author Mateos, Javier es_ES
dc.contributor.author Molina, Rafael es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2024-06-20T18:16:25Z
dc.date.available 2024-06-20T18:16:25Z
dc.date.issued 2023-11 es_ES
dc.identifier.issn 0933-3657 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205299
dc.description.abstract [EN] Digital Pathology (DP) has experienced a significant growth in recent years and has become an essential tool for diagnosing and prognosis of tumors. The availability of Whole Slide Images (WSIs) and the implementation of Deep Learning (DL) algorithms have paved the way for the appearance of Artificial Intelligence (AI) systems that support the diagnosis process. These systems require extensive and varied data for their training to be successful. However, creating labeled datasets in histopathology is laborious and time-consuming. We have developed a crowdsourcing-multiple instance labeling/learning protocol that is applied to the creation and use of the CR-AI4SkIN dataset.2 CR-AI4SkIN contains 271 WSIs of 7 Cutaneous Spindle Cell (CSC) neoplasms with expert and non-expert labels at region and WSI levels. It is the first dataset of these types of neoplasms made available. The regions selected by the experts are used to learn an automatic extractor of Regions of Interest (ROIs) from WSIs. To produce the embedding of each WSI, the representations of patches within the ROIs are obtained using a contrastive learning method, and then combined. Finally, they are fed to a Gaussian process-based crowdsourcing classifier, which utilizes the noisy non-expert WSI labels. We validate our crowdsourcing-multiple instance learning method in the CR-AI4SkIN dataset, addressing a binary classification problem (malign vs. benign). The proposed method obtains an F1 score of 0.7911 on the test set, outperforming three widely used aggregation methods for crowdsourcing tasks. Furthermore, our crowdsourcing method also outperforms the supervised model with expert labels on the test set (F1-score = 0.6035). The promising results support the proposed crowdsourcing multiple instance learning annotation protocol. It also validates the automatic extraction of interest regions and the use of contrastive embedding and Gaussian process classification to perform crowdsourcing classification tasks. es_ES
dc.description.sponsorship This work has received funding from the Spanish Ministry of Economy and Competitiveness through project PID2019-105142RB-C21 (AI4SKIN) and Spanish Ministry of Science and Innovation through project PID2022-140189OB-C22, from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under the grant agreement No. 860627 (CLARIFY) , grant B-TIC-324-UGR20 funded by Consejeria de Universidad, Investigacion e Innovacion (Junta de Andalucia) and by "ERDF A way of making Europe", and GVA through the project INNEST/2021/321 (SAMUEL) . The work of Rocio del Amor has been supported by the Spanish Ministry of Universities (FPU20/05263) . The work of Miguel Lopez Perez has been supported by the University of Granada postdoctoral program "Contrato Puente". The work of Sandra Morales has been co-funded by the Universitat Politecnica de Valencia through the program PAID-10-20.r Union's Framework Programme for Research and Innovation, under the grant agreement No. 860627 (CLARIFY) , grant B-TIC-324-UGR20 funded by Consejeria de Universidad, Investigacion e Innovacion (Junta de Andalucia) and by "ERDF A way of making Europe", and GVA through the project INNEST/2021/321 (SAMUEL) . The work of Rocio del Amor has been supported by the Spanish Ministry of Universities (FPU20/05263) . The work of Miguel Lopez Perez has been supported by the University of Granada postdoctoral program "Contrato Puente". The work of Sandra Morales has been co-funded by the Universitat Politecnica de Valencia through the program PAID-10-20. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Artificial Intelligence in Medicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Histopathology es_ES
dc.subject Skin cancer es_ES
dc.subject Gaussian processes es_ES
dc.subject Multiple instance learning es_ES
dc.subject Crowdsourcing es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The CR-AI4SkIN dataset es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.artmed.2023.102686 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-140189OB-C22/ES/ACERCANDO LA PATOLOGIA COMPUTACIONAL A LA PRACTICA CLINICA: UN SISTEMA DE IA PARA EL DIAGNOSTICO DE TUMORES CUTANEOS PRIMARIOS Y SECUNDARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU/CLoud ARtificial Intelligence For pathologY/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-20/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//B-TIC-324-UGR20/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//INNEST%2F2021%2F321/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MIU//FPU20%2F05263/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Del Amor, R.; Pérez-Cano, J.; López-Pérez, M.; Terradez, L.; Aneiros-Fernandez, J.; Morales, S.; Mateos, J.... (2023). Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The CR-AI4SkIN dataset. Artificial Intelligence in Medicine. 145. https://doi.org/10.1016/j.artmed.2023.102686 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.artmed.2023.102686 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 145 es_ES
dc.identifier.pmid 37925214 es_ES
dc.relation.pasarela S\505124 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universidad de Granada es_ES
dc.contributor.funder Ministerio de Universidades es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem