- -

Data Homogenization Method for Heterogeneous Sensors Applied to Reinforcement Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Data Homogenization Method for Heterogeneous Sensors Applied to Reinforcement Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Palacios-Morocho, Maritza Elizabeth es_ES
dc.contributor.author López-Muñoz, Pablo es_ES
dc.contributor.author Costán, Manuel A. es_ES
dc.contributor.author Monserrat del Río, Jose Francisco es_ES
dc.date.accessioned 2024-06-20T18:16:43Z
dc.date.available 2024-06-20T18:16:43Z
dc.date.issued 2023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205313
dc.description.abstract [EN] In autonomous navigation and route planning, the data obtained by the different sensors play a significant role. On the one hand, more data will lead to faster learning of the behavioral policy. On the other hand, agents equipped with different sensors will need more computing power to process the data, thus requiring more robust equipment and increasing the cost of implementation. In addition, the complexity of the algorithms increases as different types of data, i.e., data with different structures, have to be synchronized. Therefore, this paper addresses the problem of homogenization and synchronization of data provided by heterogeneous sensors. Furthermore, it presents a novel method of estimating data in order to provide the agent with a 360-degree view of the environment, similar to that provided by a laser. The method's performance compares the different behavioral policies obtained by different viewing angles of a camera with the policy obtained by a laser. The data obtained from the different viewing angles of each sensor are used in a path planning algorithm, which was designed to use a single 24-scan laser as an input source. The results show that the proposed method is robust since the behavior policies can be reused regardless of the viewing angle with which the sensor (camera) is provided. Furthermore, the proposed novel algorithm achieves an average efficiency of 68% and 94% using a 90 and 360-degree camera, respectively. es_ES
dc.description.sponsorship The work of Elizabeth Palacios-Morocho was supported by the Research and Development Grants Program, Universitat Politecnica deValencia, under Grant PAID-01-19. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Artificial intelligence es_ES
dc.subject Reinforcement learning es_ES
dc.subject Heterogeneous data es_ES
dc.subject Homogeneous data es_ES
dc.subject Point cloud es_ES
dc.subject Laser scan es_ES
dc.subject Interpolation es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Data Homogenization Method for Heterogeneous Sensors Applied to Reinforcement Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2023.3298602 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV-VIN//PAID-01-19-18//5G-SMART 5G for Smart Manufacturing/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Palacios-Morocho, ME.; López-Muñoz, P.; Costán, MA.; Monserrat Del Río, JF. (2023). Data Homogenization Method for Heterogeneous Sensors Applied to Reinforcement Learning. IEEE Access. 11:77347-77358. https://doi.org/10.1109/ACCESS.2023.3298602 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2023.3298602 es_ES
dc.description.upvformatpinicio 77347 es_ES
dc.description.upvformatpfin 77358 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\498808 es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem