Kopanska, K.; Rodriguez-Belenguer, P.; Llopis-Lorente, J.; Trenor Gomis, BA.; Saiz Rodríguez, FJ.; Pastor, M. (2023). Uncertainty assessment of proarrhythmia predictions derived from multi-level in silico models. Archives of Toxicology. (97):2721-2740. https://doi.org/10.1007/s00204-023-03557-6
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/205317
Título:
|
Uncertainty assessment of proarrhythmia predictions derived from multi-level in silico models
|
Autor:
|
Kopanska, Karolina
Rodriguez-Belenguer, Pablo
Llopis-Lorente, Jordi
Trenor Gomis, Beatriz Ana
Saiz Rodríguez, Francisco Javier
Pastor, Manuel
|
Entidad UPV:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
|
Fecha difusión:
|
|
Resumen:
|
[EN] In silico methods can be used for an early assessment of arrhythmogenic properties of drug candidates. However, their use for decision-making is conditioned by the possibility to estimate the predictions' uncertainty. ...[+]
[EN] In silico methods can be used for an early assessment of arrhythmogenic properties of drug candidates. However, their use for decision-making is conditioned by the possibility to estimate the predictions' uncertainty. This work describes our efforts to develop uncertainty quantification methods for the predictions produced by multi-level proarrhythmia models. In silico models used in this field usually start with experimental or predicted IC50 values that describe drug-induced ion channel blockade. Using such inputs, an electrophysiological model computes how the ion channel inhibition, exerted by a drug in a certain concentration, translates to an altered shape and duration of the action potential in cardiac cells, which can be represented as arrhythmogenic risk biomarkers such as the APD(90). Using this framework, we identify the main sources of aleatory and epistemic uncertainties and propose a method based on probabilistic simulations that replaces single-point estimates predicted using multiple input values, including the IC(50)s and the electrophysiological parameters, by distributions of values. Two selected variability types associated with these inputs are then propagated through the multi-level model to estimate their impact on the uncertainty levels in the output, expressed by means of intervals. The proposed approach yields single predictions of arrhythmogenic risk biomarkers together with value intervals, providing a more comprehensive and realistic description of drug effects on a human population. The methodology was tested by predicting arrhythmogenic biomarkers on a series of twelve well-characterised marketed drugs, belonging to different arrhythmogenic risk classes.
[-]
|
Palabras clave:
|
Silico toxicology
,
Drug-induced ventricular arrhythmia
,
Machine learning
,
Uncertainty
,
Variability
|
Derechos de uso:
|
Reconocimiento (by)
|
Ítems relacionados:
|
https://riunet.upv.es/handle/10251/191820
|
Fuente:
|
Archives of Toxicology. (issn:
0340-5761
)
|
DOI:
|
10.1007/s00204-023-03557-6
|
Editorial:
|
Springer-Verlag
|
Versión del editor:
|
https://doi.org/10.1007/s00204-023-03557-6
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/EC/H2020/101016496/EU/Simulation of Cardiac Devices & Drugs for in-silico Testing and Certification/
info:eu-repo/grantAgreement/EC/H2020/777365/EU/Enhacing TRANslational SAFEty Assessment through Integrative Knowledge Management/
info:eu-repo/grantAgreement/EC/H2020/964537/EU/RISK assessment of chemicals integrating HUman centric Next generation Testing strategies promoting the 3Rs/
info:eu-repo/grantAgreement/MICIU//FPU18%2F01659//AYUDA PREDOCTORAL FPU-LLOPIS LORENTE. PROYECTO: DESARROLLO DE MODELOS MULTI-ESCALA DE CORAZON HUMANO Y HERRAMIENTAS COMPUTACIONALES PARA LA EVALUACION DE LA CARDIOTOXICIDAD DE FARMACOS EN CONDICIONES SANAS Y DE INSUFICIENCIA CARDIACA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043//MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/
|
Agradecimientos:
|
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The authors received funding from the eTRANSAFE project, Innovative Medicines Initiative 2 Joint Undertaking under Grant Agreement No. ...[+]
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The authors received funding from the eTRANSAFE project, Innovative Medicines Initiative 2 Joint Undertaking under Grant Agreement No. 777365, supported from European Union s Horizon 2020 and the EFPIA. Authors declare that this work refects only the author s view, and that IMI-JU is not responsible for any use that may be made of the information it contains. Also, this project received funding from the European Union s Horizon 2020 Research and Innovation programme under Grant Agreement No. 964537 (RISK-HUNT3R), which is part of the ASPIS cluster. We
also received funding from the SimCardioTest supported by European Union s Horizon 2020 research and innovation programme under Grant Agreement No. 101016496. J.L.L. is being funded by the Ministerio de Ciencia, Innovacion y Universidades for the Formacion de Profesorado Universitario (Grant Reference: FPU18/01659). The work was also partially support by the Dirección General de Política Científca de la Generalitat Valenciana (PROMETEO/2020/043).
[-]
|
Tipo:
|
Artículo
|