- -

A unified constraint-based approach for plan and goal recognition from unreliable observations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A unified constraint-based approach for plan and goal recognition from unreliable observations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garrido, Antonio es_ES
dc.date.accessioned 2024-06-25T18:11:52Z
dc.date.available 2024-06-25T18:11:52Z
dc.date.issued 2023-10-25 es_ES
dc.identifier.issn 0950-7051 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205451
dc.description.abstract [EN] Given a sequence of observations over a plan execution, plan and goal recognition are considered as interchangeable tasks in AI planning. However, strictly speaking, the former tries to identify a plan, and the latter a set of goals, that explain the observations. Both recognition tasks are data-driven, where data comprises the plan observations, and are specially useful in proactive systems. Depending on the source of knowledge about the agents under observation, these tasks are traditionally solved by two different approaches, which require a large plan library or a planning model. In between these approaches, we propose a unified novel constraint-based approach, which distinguishes between the two tasks but is valid for both. We present a formulation, based on Partial Order Causal Link planning, that is compiled from a small plan library, to approximate a model that learns the essential causality of the original planning model. We deal with unreliable observations, which include missing and noisy observations on the real world. Modeling the observations in our formulation is straightforward. The use of the learned model allows us to address a data-driven optimization task to find the plans that most satisfy those observations (plan recognition) and the goals that are sufficiently supported by the causal relationships of the observations (goal recognition). We perform a complete evaluation of our approach in IPC domains under several indicators (accuracy, spread and ROC curves) with varying degrees of partial observability and noise on the observations. We also perform a comparison with other model-based approaches from literature. es_ES
dc.description.sponsorship This work has been partially supported by grant PID2021- 127647NB-C22 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe", and by the Spanish MINECO project TIN2017-88476-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Knowledge-Based Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Plan recognition es_ES
dc.subject Goal recognition es_ES
dc.subject Partial observability es_ES
dc.subject Noisy observations es_ES
dc.subject Planning es_ES
dc.subject Constraint satisfaction es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A unified constraint-based approach for plan and goal recognition from unreliable observations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.knosys.2023.110895 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127647NB-C22/ES/APRENDIZAJE PARA PLANIFICACION SENSIBLE AL HUMANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TIN2017-88476-C2-1-R//RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Garrido, A. (2023). A unified constraint-based approach for plan and goal recognition from unreliable observations. Knowledge-Based Systems. 278. https://doi.org/10.1016/j.knosys.2023.110895 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.knosys.2023.110895 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 278 es_ES
dc.relation.pasarela S\498455 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem