Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez, Christian | es_ES |
dc.contributor.author | Climent, Laura | es_ES |
dc.contributor.author | Nicoló, Giancarlo | es_ES |
dc.contributor.author | Arbelaez, Alejandro | es_ES |
dc.contributor.author | Salido, Miguel A. | es_ES |
dc.date.accessioned | 2024-06-25T18:12:11Z | |
dc.date.available | 2024-06-25T18:12:11Z | |
dc.date.issued | 2023-11 | es_ES |
dc.identifier.issn | 0952-1976 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205467 | |
dc.description.abstract | [EN] In recent decades, research on supply chain management (SCM) has enabled companies to improve their environmental, social, and economic performance.This paper presents an industrial application of logistics that can be classified as an inventory-route problem. The problem consists of assigning orders to the available warehouses. The orders are composed of items that must be loaded within a week. The warehouses provide an inventory of the number of items available for each day of the week, so the objective is to minimize the total transportation costs and the costs of producing extra stock to satisfy the weekly demand. To solve this problem a formal mathematical model is proposed. Then a hybrid approach that involves two metaheuristics: a greedy randomized adaptive search procedure (GRASP) and a genetic algorithm (GA) is proposed. Additionally, a meta-learning tuning method is incorporated into our hybridized approach, which yields better results but with a longer computation time. Thus, the trade-off of using it is analyzed.An extensive evaluation was carried out over realistic instances provided by an industrial partner. The proposed technique was evaluated and compared with several complete and incomplete solvers from the state of the art (CP Optimizer, Yuck, OR-Tools, etc.). The results showed that our hybrid metaheuristic outperformed the behavior of these well-known solvers, mainly in large-scale instances (2000 orders per week). This hybrid algorithm provides the company with a powerful tool to solve its supply chain management problem, delivering significant economic benefits every week. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the financial support of the European Social Fund (Investing In Your Future) , the Spanish Ministry of Science (project PID2021-125919NB-I00), and valgrAI-Valencian Graduate School and Research Network of Artificial Intelligence and the Generalitat Valenciana, Spain, and co-funded by the European Union. The authors also thank the industrial partner Logifruit for its support in the problem specification and the permission to generate randomized data for evaluating the proposed algorithms. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Applications of Artificial Intelligence | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Metaheuristics | es_ES |
dc.subject | Supply chain management | es_ES |
dc.subject | Hybrid algorithm | es_ES |
dc.subject | GRASP | es_ES |
dc.subject | Meta-learning | es_ES |
dc.subject | Inventor-routing problem | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A hybrid metaheuristic with learning for a real supply chain scheduling problem | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engappai.2023.107188 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125919NB-I00/ES/BUSQUEDA METAHEURISTICA CON APRENDIZAJE EN PROBLEMAS DE SCHEDULING SOSTENIBLE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Pérez, C.; Climent, L.; Nicoló, G.; Arbelaez, A.; Salido, MA. (2023). A hybrid metaheuristic with learning for a real supply chain scheduling problem. Engineering Applications of Artificial Intelligence. 126(Part D). https://doi.org/10.1016/j.engappai.2023.107188 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engappai.2023.107188 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 126 | es_ES |
dc.description.issue | Part D | es_ES |
dc.relation.pasarela | S\499819 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Valencian Graduate School and Research Network of Artificial Intelligence | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |