- -

A hybrid metaheuristic with learning for a real supply chain scheduling problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A hybrid metaheuristic with learning for a real supply chain scheduling problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez, Christian es_ES
dc.contributor.author Climent, Laura es_ES
dc.contributor.author Nicoló, Giancarlo es_ES
dc.contributor.author Arbelaez, Alejandro es_ES
dc.contributor.author Salido, Miguel A. es_ES
dc.date.accessioned 2024-06-25T18:12:11Z
dc.date.available 2024-06-25T18:12:11Z
dc.date.issued 2023-11 es_ES
dc.identifier.issn 0952-1976 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205467
dc.description.abstract [EN] In recent decades, research on supply chain management (SCM) has enabled companies to improve their environmental, social, and economic performance.This paper presents an industrial application of logistics that can be classified as an inventory-route problem. The problem consists of assigning orders to the available warehouses. The orders are composed of items that must be loaded within a week. The warehouses provide an inventory of the number of items available for each day of the week, so the objective is to minimize the total transportation costs and the costs of producing extra stock to satisfy the weekly demand. To solve this problem a formal mathematical model is proposed. Then a hybrid approach that involves two metaheuristics: a greedy randomized adaptive search procedure (GRASP) and a genetic algorithm (GA) is proposed. Additionally, a meta-learning tuning method is incorporated into our hybridized approach, which yields better results but with a longer computation time. Thus, the trade-off of using it is analyzed.An extensive evaluation was carried out over realistic instances provided by an industrial partner. The proposed technique was evaluated and compared with several complete and incomplete solvers from the state of the art (CP Optimizer, Yuck, OR-Tools, etc.). The results showed that our hybrid metaheuristic outperformed the behavior of these well-known solvers, mainly in large-scale instances (2000 orders per week). This hybrid algorithm provides the company with a powerful tool to solve its supply chain management problem, delivering significant economic benefits every week. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support of the European Social Fund (Investing In Your Future) , the Spanish Ministry of Science (project PID2021-125919NB-I00), and valgrAI-Valencian Graduate School and Research Network of Artificial Intelligence and the Generalitat Valenciana, Spain, and co-funded by the European Union. The authors also thank the industrial partner Logifruit for its support in the problem specification and the permission to generate randomized data for evaluating the proposed algorithms. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Applications of Artificial Intelligence es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Optimization es_ES
dc.subject Metaheuristics es_ES
dc.subject Supply chain management es_ES
dc.subject Hybrid algorithm es_ES
dc.subject GRASP es_ES
dc.subject Meta-learning es_ES
dc.subject Inventor-routing problem es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A hybrid metaheuristic with learning for a real supply chain scheduling problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engappai.2023.107188 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125919NB-I00/ES/BUSQUEDA METAHEURISTICA CON APRENDIZAJE EN PROBLEMAS DE SCHEDULING SOSTENIBLE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Pérez, C.; Climent, L.; Nicoló, G.; Arbelaez, A.; Salido, MA. (2023). A hybrid metaheuristic with learning for a real supply chain scheduling problem. Engineering Applications of Artificial Intelligence. 126(Part D). https://doi.org/10.1016/j.engappai.2023.107188 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engappai.2023.107188 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 126 es_ES
dc.description.issue Part D es_ES
dc.relation.pasarela S\499819 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Valencian Graduate School and Research Network of Artificial Intelligence es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem