Mostrar el registro sencillo del ítem
dc.contributor.author | Amorim, Miqueias | es_ES |
dc.contributor.author | Dimuro, Graçaliz | es_ES |
dc.contributor.author | Borges, Eduardo | es_ES |
dc.contributor.author | Dalmazo, Bruno L. | es_ES |
dc.contributor.author | Marco-Detchart, Cédric | es_ES |
dc.contributor.author | Lucca, Giancarlo | es_ES |
dc.contributor.author | Bustince, Humberto | es_ES |
dc.date.accessioned | 2024-06-26T18:11:27Z | |
dc.date.available | 2024-06-26T18:11:27Z | |
dc.date.issued | 2023-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205497 | |
dc.description.abstract | [EN] Edge detection is a crucial process in numerous stages of computer vision. This field of study has recently gained momentum due to its importance in various applications. The uncertainty, among other characteristics of images, makes it difficult to accurately determine the edge of objects. Furthermore, even the definition of an edge is vague as an edge can be considered as the maximum boundary between two regions with different properties. Given the advancement of research in image discontinuity detection, especially using aggregation and pre-aggregation functions, and the lack of systematic literature reviews on this topic, this paper aims to gather and synthesize the current state of the art of this topic. To achieve this, this paper presents a systematic review of the literature, which selected 24 papers filtered from 428 articles found in computer databases in the last seven years. It was possible to synthesize important related information, which was grouped into three approaches: (i) based on both multiple descriptor extraction and data aggregation, (ii) based on both the aggregation of distance functions and fuzzy C-means, and (iii) based on fuzzy theory, namely type-2 fuzzy and neutrosophic sets. As a conclusion, this review provides interesting gaps that can be explored in future work. | es_ES |
dc.description.sponsorship | This work was partially supported with grant PID2021-123673OB-C31 funded by MCIN/AEI/ 10.13039/501100011033 and by ERDF A way of making Europe , Consellería d Innovació, Universitats, Ciencia i Societat Digital from Comunitat Valenciana (APOSTD/2021/227) through the European Social Fund (Investing In Your Future), grant from the Reseach Services of Universitat Politècnica de València (PAID-PD-22), FAPERGS/ Brazil (Proc. 19/2551-0001279-9,19/2551-0001660) and CNPq/Brazil (301618/2019-4, 305805/2021-5) Programa de Apoio à Fixação de Jovens Doutores no Brasil (23/2551-0000126-8). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Axioms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Literature review | es_ES |
dc.subject | Edge detection | es_ES |
dc.subject | Aggregation functions | es_ES |
dc.subject | Pre-aggregation functions | es_ES |
dc.title | Systematic Review of Aggregation Functions Applied to Image Edge Detection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/axioms12040330 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123673OB-C31/ES/SERVICIOS INTELIGENTES COORDINADOS PARA AREAS INTELIGENTES ADAPTATIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//APOSTD%2F2021%2F227//MODELO DIFUSO PARA LA MEJORA DE LA INTERACCIÓN VISUAL EN ASISTENTES COGNITIVOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-PD-22/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//301618%2F2019-4/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//305805%2F2021-5/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//23%2F2551-0000126-8/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPERGS//19%2F2551-0001660/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPERGS//19%2F2551-0001279-9/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Amorim, M.; Dimuro, G.; Borges, E.; Dalmazo, BL.; Marco-Detchart, C.; Lucca, G.; Bustince, H. (2023). Systematic Review of Aggregation Functions Applied to Image Edge Detection. Axioms. 12(4). https://doi.org/10.3390/axioms12040330 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/axioms12040330 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2075-1680 | es_ES |
dc.relation.pasarela | S\497461 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |