Mostrar el registro sencillo del ítem
dc.contributor.author | García-Climent, Eloi | es_ES |
dc.contributor.author | Peyman, Mohammad | es_ES |
dc.contributor.author | Serrat, Carles | es_ES |
dc.contributor.author | Xhafa, Fatos | es_ES |
dc.date.accessioned | 2024-06-26T18:11:44Z | |
dc.date.available | 2024-06-26T18:11:44Z | |
dc.date.issued | 2023-04-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205510 | |
dc.description.abstract | [EN] In this paper, we present a novel framework for enriching time series data in smart cities by supplementing it with information from external sources via semantic data enrichment. Our methodology effectively merges multiple data sources into a uniform time series, while addressing difficulties such as data quality, contextual information, and time lapses. We demonstrate the efficacy of our method through a case study in Barcelona, which permitted the use of advanced analysis methods such as windowed cross-correlation and peak picking. The resulting time series data can be used to determine traffic patterns and has potential uses in other smart city sectors, such as air quality, energy efficiency, and public safety. Interactive dashboards enable stakeholders to visualize and summarize key insights and patterns. | es_ES |
dc.description.sponsorship | This work was partially funded by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/501100011033), as well as by the Barcelona City Council and Fundació la Caixa under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Axioms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Join operation | es_ES |
dc.subject | Data standardization | es_ES |
dc.subject | Spatial data distribution | es_ES |
dc.subject | Lagged cross-correlations | es_ES |
dc.subject | Time series data | es_ES |
dc.subject | Semantic data enrichment | es_ES |
dc.subject | Open Data Barcelona | es_ES |
dc.subject | Smart City | es_ES |
dc.title | Join Operation for Semantic Data Enrichment of Asynchronous Time Series Data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/axioms12040349 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//21S09355-001/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | García-Climent, E.; Peyman, M.; Serrat, C.; Xhafa, F. (2023). Join Operation for Semantic Data Enrichment of Asynchronous Time Series Data. Axioms. 12(4). https://doi.org/10.3390/axioms12040349 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/axioms12040349 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2075-1680 | es_ES |
dc.relation.pasarela | S\503436 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |