- -

Multipath Planning Acceleration Method With Double Deep R-Learning Based on a Genetic Algorithm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multipath Planning Acceleration Method With Double Deep R-Learning Based on a Genetic Algorithm

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Palacios-Morocho, Maritza Elizabeth es_ES
dc.contributor.author Inca, Saúl es_ES
dc.contributor.author Monserrat del Río, Jose Francisco es_ES
dc.date.accessioned 2024-06-26T18:11:47Z
dc.date.available 2024-06-26T18:11:47Z
dc.date.issued 2023-10 es_ES
dc.identifier.issn 0018-9545 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205512
dc.description.abstract [EN] Autonomous navigation is a well-studied field in robotics requiring high standards of efficiency and reliability. Many studies focus on applying AI techniques to obtain a high-quality map, a precise localization, or improve the proposed trajectory to be followed by the agent. As traditional planning methods need a high-quality map to obtain optimal trajectories, this paper addresses the problem of multipath map-less planning, and proposes a novel multipath planning algorithm (Double Deep Reinforcement Learning - Enhanced Genetic (DDRL-EG)) for mobile robots in an unknown environment. It combines Double Deep Reinforcement Learning (DDRL) with Heuristic Knowledge (HK), Experience Replay (ER), Genetic Algorithm (GA), and Dynamic Programming (DP), allowing the agent to reach its target successfully without maps. In addition, it optimizes the training time and the chosen path in terms of time and distance to the target. A hybrid method is also used in which Semi-Uniform Distributed Exploration (SUDE) is employed to determine the probability that the action is decided based on directed knowledge, hybrid knowledge, or autonomous knowledge. The performance of DDRL-EG is compared with two other algorithms in two different environments. The results show that DDRL-EG is a more robust and powerful algorithm since with less training, it can provide much smoother and shorter trajectories to the target. es_ES
dc.description.sponsorship The work of Elizabeth Palacios was supported by the Research andDevelopment Grants Program (PAID-01-19) of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Vehicular Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Reinforcement learning es_ES
dc.subject Dynamic programming es_ES
dc.subject Prioritized experience es_ES
dc.subject Heuristic knowledge es_ES
dc.subject Genetic algorithm es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Multipath Planning Acceleration Method With Double Deep R-Learning Based on a Genetic Algorithm es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TVT.2023.3277981 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-19-18//5G-SMART 5G for Smart Manufacturing/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Palacios-Morocho, ME.; Inca, S.; Monserrat Del Río, JF. (2023). Multipath Planning Acceleration Method With Double Deep R-Learning Based on a Genetic Algorithm. IEEE Transactions on Vehicular Technology. 72(10):12681-12696. https://doi.org/10.1109/TVT.2023.3277981 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TVT.2023.3277981 es_ES
dc.description.upvformatpinicio 12681 es_ES
dc.description.upvformatpfin 12696 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 72 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\494423 es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
upv.costeAPC 1981.3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem