Mostrar el registro sencillo del ítem
dc.contributor.author | Risco, Sebastián | es_ES |
dc.contributor.author | Alarcón-Marín, Caterina | es_ES |
dc.contributor.author | Langarita-Benítez, Sergio | es_ES |
dc.contributor.author | Caballer Fernández, Miguel | es_ES |
dc.contributor.author | Moltó, Germán | es_ES |
dc.date.accessioned | 2024-07-01T18:36:25Z | |
dc.date.available | 2024-07-01T18:36:25Z | |
dc.date.issued | 2024-04 | es_ES |
dc.identifier.issn | 0167-739X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205618 | |
dc.description.abstract | [EN] Serverless computing was a breakthrough in Cloud computing due to its high elasticity capabilities and fine-grained pay-per-use model offered by the main public Cloud providers. Meanwhile, open-source serverless platforms supporting the FaaS (Function as a Service) model allow users to take advantage of many of their benefits while operating on the on-premises platforms of organizations. This opens the possibility to deploy and exploit them on the different layers of the cloud-to-edge continuum, either on IoT (Internet of Things) devices located at the Edge (i.e. next to data acquisition devices), in on-premises clusters closer to the data sources (i.e. Fog computing) or directly on the Cloud. This paper presents two strategies to mitigate the overload that disparate data ingestion rates may cause in low-powered devices at the Edge or Fog layers. To this end, it is proposed to delegate and reschedule serverless jobs between the different layers of the cloud-to-edge continuum using an open-source platform for event-driven file processing. To demonstrate the performance of these strategies, a use case for fire detection is proposed that includes processing in the Fog via minified Kubernetes clusters located near the Edge, in the private Cloud via on-premises elastic clusters and, finally, in the public Cloud by using the AWS (Amazon Web Services) Lambda FaaS service. The results indicate that these strategies can mitigate overloads in use cases involving processing across the cloud-to-edge continuum by coordinating several layers of computing resources. | es_ES |
dc.description.sponsorship | Grant PID2020-113126RB-I00 funded by MCIN/AEI/10.13039/501100011033. Project PDC2021-120844-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. This work was supported by the project AI-SPRINT "AI in Secure Privacy-Preserving Computing Continuum" that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant 101016577. This work was also supported by the project AI4EOSC "Artificial Intelligence for the European Open Science Cloud" that has received funding from the European Union's Horizon Europe Research and Innovation Programme under Grant 101058593. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Future Generation Computer Systems | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Cloud-to-edge continuum | es_ES |
dc.subject | Containers | es_ES |
dc.subject | FaaS | es_ES |
dc.subject | Kubernetes: Serverless computing | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Rescheduling serverless workloads across the cloud-to-edge continuum | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.future.2023.12.015 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-120844-I00/ES/COMPUTACION ABIERTA SIN SERVIDOR PARA LA ADOPCION DE INNOVACION RAPIDA EN RECURSOS SEGUROS PREPARADOS PARA LA EMPRESA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113126RB-I00/ES/COMPUTACION CIENTIFICA SERVERLESS A TRAVES DEL HIBRIDO CONTINUO CLOUD/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101016577/EU/Artificial Intelligence in Secure PRIvacy-preserving computing coNTinuum/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/HE/101058593/EU/Artificial Intelligence for the European Open Science Cloud/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Risco, S.; Alarcón-Marín, C.; Langarita-Benítez, S.; Caballer Fernández, M.; Moltó, G. (2024). Rescheduling serverless workloads across the cloud-to-edge continuum. Future Generation Computer Systems. 153:457-466. https://doi.org/10.1016/j.future.2023.12.015 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.future.2023.12.015 | es_ES |
dc.description.upvformatpinicio | 457 | es_ES |
dc.description.upvformatpfin | 466 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 153 | es_ES |
dc.relation.pasarela | S\507294 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |