- -

Rescheduling serverless workloads across the cloud-to-edge continuum

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rescheduling serverless workloads across the cloud-to-edge continuum

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Risco, Sebastián es_ES
dc.contributor.author Alarcón-Marín, Caterina es_ES
dc.contributor.author Langarita-Benítez, Sergio es_ES
dc.contributor.author Caballer Fernández, Miguel es_ES
dc.contributor.author Moltó, Germán es_ES
dc.date.accessioned 2024-07-01T18:36:25Z
dc.date.available 2024-07-01T18:36:25Z
dc.date.issued 2024-04 es_ES
dc.identifier.issn 0167-739X es_ES
dc.identifier.uri http://hdl.handle.net/10251/205618
dc.description.abstract [EN] Serverless computing was a breakthrough in Cloud computing due to its high elasticity capabilities and fine-grained pay-per-use model offered by the main public Cloud providers. Meanwhile, open-source serverless platforms supporting the FaaS (Function as a Service) model allow users to take advantage of many of their benefits while operating on the on-premises platforms of organizations. This opens the possibility to deploy and exploit them on the different layers of the cloud-to-edge continuum, either on IoT (Internet of Things) devices located at the Edge (i.e. next to data acquisition devices), in on-premises clusters closer to the data sources (i.e. Fog computing) or directly on the Cloud. This paper presents two strategies to mitigate the overload that disparate data ingestion rates may cause in low-powered devices at the Edge or Fog layers. To this end, it is proposed to delegate and reschedule serverless jobs between the different layers of the cloud-to-edge continuum using an open-source platform for event-driven file processing. To demonstrate the performance of these strategies, a use case for fire detection is proposed that includes processing in the Fog via minified Kubernetes clusters located near the Edge, in the private Cloud via on-premises elastic clusters and, finally, in the public Cloud by using the AWS (Amazon Web Services) Lambda FaaS service. The results indicate that these strategies can mitigate overloads in use cases involving processing across the cloud-to-edge continuum by coordinating several layers of computing resources. es_ES
dc.description.sponsorship Grant PID2020-113126RB-I00 funded by MCIN/AEI/10.13039/501100011033. Project PDC2021-120844-I00 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. This work was supported by the project AI-SPRINT "AI in Secure Privacy-Preserving Computing Continuum" that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant 101016577. This work was also supported by the project AI4EOSC "Artificial Intelligence for the European Open Science Cloud" that has received funding from the European Union's Horizon Europe Research and Innovation Programme under Grant 101058593. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Future Generation Computer Systems es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cloud computing es_ES
dc.subject Cloud-to-edge continuum es_ES
dc.subject Containers es_ES
dc.subject FaaS es_ES
dc.subject Kubernetes: Serverless computing es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Rescheduling serverless workloads across the cloud-to-edge continuum es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.future.2023.12.015 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-120844-I00/ES/COMPUTACION ABIERTA SIN SERVIDOR PARA LA ADOPCION DE INNOVACION RAPIDA EN RECURSOS SEGUROS PREPARADOS PARA LA EMPRESA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113126RB-I00/ES/COMPUTACION CIENTIFICA SERVERLESS A TRAVES DEL HIBRIDO CONTINUO CLOUD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101016577/EU/Artificial Intelligence in Secure PRIvacy-preserving computing coNTinuum/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/HE/101058593/EU/Artificial Intelligence for the European Open Science Cloud/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Risco, S.; Alarcón-Marín, C.; Langarita-Benítez, S.; Caballer Fernández, M.; Moltó, G. (2024). Rescheduling serverless workloads across the cloud-to-edge continuum. Future Generation Computer Systems. 153:457-466. https://doi.org/10.1016/j.future.2023.12.015 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.future.2023.12.015 es_ES
dc.description.upvformatpinicio 457 es_ES
dc.description.upvformatpfin 466 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 153 es_ES
dc.relation.pasarela S\507294 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem