- -

Using Reinforcement Learning to Solve a Dynamic Orienteering Problem with Random Rewards Affected by the Battery Status

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using Reinforcement Learning to Solve a Dynamic Orienteering Problem with Random Rewards Affected by the Battery Status

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Juan, Angel A. es_ES
dc.contributor.author Marugan, Carolina A. es_ES
dc.contributor.author Ahsini, Yusef es_ES
dc.contributor.author Fornes, Rafael es_ES
dc.contributor.author Panadero, Javier es_ES
dc.contributor.author Martín, Xabier A. es_ES
dc.date.accessioned 2024-07-01T18:36:36Z
dc.date.available 2024-07-01T18:36:36Z
dc.date.issued 2023-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205624
dc.description.abstract [EN] This paper discusses an orienteering optimization problem where a vehicle using electric batteries must travel from an origin depot to a destination depot while maximizing the total reward collected along its route. The vehicle must cross several consecutive regions, with each region containing different types of charging nodes. A charging node has to be selected in each region, and the reward for visiting each node¿in terms of a `satisfactory¿ charging process¿is a binary random variable that depends upon dynamic factors such as the type of charging node, weather conditions, congestion, battery status, etc. To learn how to efficiently operate in this dynamic environment, a hybrid methodology combining simulation with reinforcement learning is proposed. The reinforcement learning component is able to make informed decisions at each stage, while the simulation component is employed to validate the learning process. The computational experiments show how the proposed methodology is capable of design routing plans that are significantly better than non-informed decisions, thus allowing for an efficient management of the vehicle¿s battery under such dynamic conditions. es_ES
dc.description.sponsorship This work was partially funded by the European Commission projects SUN (HORIZONCL4-2022-HUMAN-01-14-101092612), and AIDEAS (HORIZON-CL4-2021-TWIN-TRANSITION-01-07-101057294). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Batteries es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Orienteering problem es_ES
dc.subject Battery management es_ES
dc.subject Electric vehicle es_ES
dc.subject Reinforcement learning es_ES
dc.subject Simulation es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Using Reinforcement Learning to Solve a Dynamic Orienteering Problem with Random Rewards Affected by the Battery Status es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/batteries9080416 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/HE/101057294/EU/AI Driven industrial Equipment product life cycle boosting Agility, Sustainability and resilience/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/HE/101092612/EU/Social and hUman ceNtered XR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Juan, AA.; Marugan, CA.; Ahsini, Y.; Fornes, R.; Panadero, J.; Martín, XA. (2023). Using Reinforcement Learning to Solve a Dynamic Orienteering Problem with Random Rewards Affected by the Battery Status. Batteries. 9(8). https://doi.org/10.3390/batteries9080416 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/batteries9080416 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2313-0105 es_ES
dc.relation.pasarela S\509509 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem