- -

Learning cost action planning models with perfect precision via constraint propagation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Learning cost action planning models with perfect precision via constraint propagation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garrido, Antonio es_ES
dc.date.accessioned 2024-07-01T18:36:47Z
dc.date.available 2024-07-01T18:36:47Z
dc.date.issued 2023-05 es_ES
dc.identifier.issn 0020-0255 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205629
dc.description.abstract [EN] Data-driven AI is rapidly gaining importance. In the context of AI planning, a constraint programming formulation for learning action models in a data-driven fashion is proposed. Data comprises plan observations, which are automatically transformed into a set of planning constraints which need to be satisfied. The formulation captures the essence of the action model and unifies functionalities that are individually supported by other learning approaches, such as costs, noise/uncertainty on actions, information on intermediate state observations and mutex reasoning. Reliability is a key concern in data-driven learning, but existing approaches usually learn action models that can be imprecise, where imprecision here is an error indicator of learning something incorrect. On the contrary, the proposed approach guarantees reliability in terms of perfect precision by using constraint propagation. This means that what is learned is 100% correct (i.e., error-free), not only for the initial observations, but also for future observations. To our knowledge, this is a novelty in action model learning literature. Although perfect precision might potentially limit the amount of learned information, the exhaustive experiments over 20 planning domains show that such amount is comparable, and even better, to ARMS and FAMA, two state-of-the-art benchmarks in action model learning. es_ES
dc.description.sponsorship This work has been partially supported by grant PID2021-127647NB-C22 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe", and by the Spanish MINECO project TIN2017-88476-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information Sciences es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Learning es_ES
dc.subject Cost action model es_ES
dc.subject Classical planning es_ES
dc.subject Constraint programming es_ES
dc.subject Reliability es_ES
dc.subject Precision es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Learning cost action planning models with perfect precision via constraint propagation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ins.2023.01.111 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TIN2017-88476-C2-1-R//RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-127647NB-C22//APRENDIZAJE PARA PLANIFICACIÓN SENSIBLE AL HUMANO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Garrido, A. (2023). Learning cost action planning models with perfect precision via constraint propagation. Information Sciences. 628:148-176. https://doi.org/10.1016/j.ins.2023.01.111 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ins.2023.01.111 es_ES
dc.description.upvformatpinicio 148 es_ES
dc.description.upvformatpfin 176 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 628 es_ES
dc.relation.pasarela S\482026 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem