Resumen:
|
[EN] Most of the equivalent circuit battery models available in the literature have been developed specifically for one cell and require extensive measurements to calibrate cell electrical parameters in different operating ...[+]
[EN] Most of the equivalent circuit battery models available in the literature have been developed specifically for one cell and require extensive measurements to calibrate cell electrical parameters in different operating conditions. In this work, a generalized equivalent circuit model for lithium-iron phosphate batteries is proposed, which only relies on the nominal capacity, available in the cell datasheet. Using data from cells previously characterized, a generalized zeroth-order model is developed. This novel approach allows to avoid time-consuming and expensive experiments and reduces the test matrix. In spite of not relying on detailed data on the dependence of the electrical parameters with respect to state of charge, c-rate and temperature, the model provides an excellent description of the electrical behavior for both low-energy and high-energy cells, the error being always kept below 2 %. The internal resistance of the cell is expressed as a function of a new characteristic coefficient, which is typical of this lithium-ion battery chemistry. This coefficient is fitted to an exponential function of the temperature, which is physically meaningful, as the internal resistance has an Arrhenius-like behavior with respect to temperature. This model, due to its simplicity and flexibility, is particularly useful for control-oriented applications, and for off-line analyses.
[-]
|
Agradecimientos:
|
This work was supported by Generalitat Valenciana within the framework of the PROMETEO project "Contribution to the decarbonization of transport by optimizing the thermal management of vehicle batteries electrified" with ...[+]
This work was supported by Generalitat Valenciana within the framework of the PROMETEO project "Contribution to the decarbonization of transport by optimizing the thermal management of vehicle batteries electrified" with reference number PROMETEO/2020/042. Luca Agizza is supported by grant ACIF/2021/005 funded by Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital of the Generalitat Valenciana. A special thanks goes to Eng. Bernardo Planells Vela for his valuable effort in realizing all the experiments needed for this work and for the preparation of the test-bench.
[-]
|