Mostrar el registro sencillo del ítem
dc.contributor.author | Tabatabaei, Zahra | es_ES |
dc.contributor.author | Wang, Yuandou | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Oliver Moll, Javier | es_ES |
dc.contributor.author | Zhao, Zhiming | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2024-07-01T18:37:16Z | |
dc.date.available | 2024-07-01T18:37:16Z | |
dc.date.issued | 2023-09-28 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205646 | |
dc.description.abstract | [EN] The paper proposes a federated content-based medical image retrieval (FedCBMIR) tool that utilizes federated learning (FL) to address the challenges of acquiring a diverse medical data set for training CBMIR models. CBMIR is a tool to find the most similar cases in the data set to assist pathologists. Training such a tool necessitates a pool of whole-slide images (WSIs) to train the feature extractor (FE) to extract an optimal embedding vector. The strict regulations surrounding data sharing in hospitals makes it difficult to collect a rich data set. FedCBMIR distributes an unsupervised FE to collaborative centers for training without sharing the data set, resulting in shorter training times and higher performance. FedCBMIR was evaluated by mimicking two experiments, including two clients with two different breast cancer data sets, namely BreaKHis and Camelyon17 (CAM17), and four clients with the BreaKHis data set at four different magnifications. FedCBMIR increases the F1 score (F1S) of each client from 96% to 98.1% in CAM17 and from 95% to 98.4% in BreaKHis, with 11.44 fewer hours in training time. FedCBMIR provides 98%, 96%, 94%, and 97% F1S in the BreaKHis experiment with a generalized model and accomplishes this in 25.53 fewer hours of training. | es_ES |
dc.description.sponsorship | This study is funded by European Union s Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement No. 860627 (CLARIFY Project). The work of Adrián Colomer has been supported by the ValgrAI Valencian Graduate School and Research Network for Artificial Intelligence and Generalitat Valenciana and Universitat Politècnica de València (PAID-PD-22). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Bioengineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Breast cancer | es_ES |
dc.subject | Content-based medical image retrieval (CBMIR) | es_ES |
dc.subject | Convolutional auto-encoder (CAE) | es_ES |
dc.subject | Federated learning (FL) | es_ES |
dc.subject | Computer-aided diagnosis | es_ES |
dc.subject | Histopathological images | es_ES |
dc.subject | Digital pathology | es_ES |
dc.subject | Whole-slide images (WSIs) | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/bioengineering10101144 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/860627/EU/CLoud ARtificial Intelligence For pathologY/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-PD-22/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Tabatabaei, Z.; Wang, Y.; Colomer, A.; Oliver Moll, J.; Zhao, Z.; Naranjo Ornedo, V. (2023). WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval. Bioengineering. 10(10). https://doi.org/10.3390/bioengineering10101144 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/bioengineering10101144 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2306-5354 | es_ES |
dc.relation.pasarela | S\500507 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |