- -

WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tabatabaei, Zahra es_ES
dc.contributor.author Wang, Yuandou es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Oliver Moll, Javier es_ES
dc.contributor.author Zhao, Zhiming es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2024-07-01T18:37:16Z
dc.date.available 2024-07-01T18:37:16Z
dc.date.issued 2023-09-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205646
dc.description.abstract [EN] The paper proposes a federated content-based medical image retrieval (FedCBMIR) tool that utilizes federated learning (FL) to address the challenges of acquiring a diverse medical data set for training CBMIR models. CBMIR is a tool to find the most similar cases in the data set to assist pathologists. Training such a tool necessitates a pool of whole-slide images (WSIs) to train the feature extractor (FE) to extract an optimal embedding vector. The strict regulations surrounding data sharing in hospitals makes it difficult to collect a rich data set. FedCBMIR distributes an unsupervised FE to collaborative centers for training without sharing the data set, resulting in shorter training times and higher performance. FedCBMIR was evaluated by mimicking two experiments, including two clients with two different breast cancer data sets, namely BreaKHis and Camelyon17 (CAM17), and four clients with the BreaKHis data set at four different magnifications. FedCBMIR increases the F1 score (F1S) of each client from 96% to 98.1% in CAM17 and from 95% to 98.4% in BreaKHis, with 11.44 fewer hours in training time. FedCBMIR provides 98%, 96%, 94%, and 97% F1S in the BreaKHis experiment with a generalized model and accomplishes this in 25.53 fewer hours of training. es_ES
dc.description.sponsorship This study is funded by European Union s Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement No. 860627 (CLARIFY Project). The work of Adrián Colomer has been supported by the ValgrAI Valencian Graduate School and Research Network for Artificial Intelligence and Generalitat Valenciana and Universitat Politècnica de València (PAID-PD-22). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Bioengineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Breast cancer es_ES
dc.subject Content-based medical image retrieval (CBMIR) es_ES
dc.subject Convolutional auto-encoder (CAE) es_ES
dc.subject Federated learning (FL) es_ES
dc.subject Computer-aided diagnosis es_ES
dc.subject Histopathological images es_ES
dc.subject Digital pathology es_ES
dc.subject Whole-slide images (WSIs) es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/bioengineering10101144 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU/CLoud ARtificial Intelligence For pathologY/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-PD-22/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Tabatabaei, Z.; Wang, Y.; Colomer, A.; Oliver Moll, J.; Zhao, Z.; Naranjo Ornedo, V. (2023). WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval. Bioengineering. 10(10). https://doi.org/10.3390/bioengineering10101144 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/bioengineering10101144 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2306-5354 es_ES
dc.relation.pasarela S\500507 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem