Mostrar el registro sencillo del ítem
dc.contributor.author | Beneyto, Carles | es_ES |
dc.contributor.author | Aranda Domingo, José Ángel | es_ES |
dc.contributor.author | Francés, F. | es_ES |
dc.date.accessioned | 2024-07-01T18:37:28Z | |
dc.date.available | 2024-07-01T18:37:28Z | |
dc.date.issued | 2023-06-16 | es_ES |
dc.identifier.issn | 0262-6667 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/205653 | |
dc.description.abstract | [EN] Stochastic weather generators are powerful tools capable of extending the available precipitation records to the desired length. These, however, rely upon the amount of information available, which often is scarce, especially in arid and semi-arid regions. No studies can be found dealing with the uncertainty associated with these estimates related to the amount of information used in the weather generation calibration process, which is precisely the aim of the present study. A Monte Carlo simulation from a synthetic population was performed, evaluating the uncertainty of the simulated quantiles in different practical available information scenarios. The results showed that incorporating a regional study of annual maximum daily precipitation in the model parameterization clearly reduced the uncertainty of all quantile estimates. In addition, it has been proved that the uncertainty of these estimates increases with the population extremality, thus marking the importance of integrating additional information in regions with extreme precipitation patterns. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Science and Innovation through the research project TETISCHANGE (RTI2018-093717-B-100). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Hydrological Sciences Journal | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Weather generator | es_ES |
dc.subject | Uncertainty | es_ES |
dc.subject | Regional extreme precipitation study | es_ES |
dc.subject | Monte Carlo simulation | es_ES |
dc.subject | Quantile | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Exploring the uncertainty of weather generators' extreme estimates in different practical available information scenarios | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/02626667.2023.2208754 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093717-B-I00/ES/MEJORAS DEL CONOCIMIENTO Y DE LAS CAPACIDADES DE MODELIZACION PARA LA PROGNOSIS DE LOS EFECTOS DEL CAMBIO GLOBAL EN UNA CUENCA HIDROLOGICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.description.bibliographicCitation | Beneyto, C.; Aranda Domingo, JÁ.; Francés, F. (2023). Exploring the uncertainty of weather generators' extreme estimates in different practical available information scenarios. Hydrological Sciences Journal. 68(9):1203-1212. https://doi.org/10.1080/02626667.2023.2208754 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/02626667.2023.2208754 | es_ES |
dc.description.upvformatpinicio | 1203 | es_ES |
dc.description.upvformatpfin | 1212 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 68 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\497437 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
upv.costeAPC | 3502.95 | es_ES |