- -

Threat Hunting Architecture Using a Machine Learning Approach for Critical Infrastructures Protection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Threat Hunting Architecture Using a Machine Learning Approach for Critical Infrastructures Protection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aragonés Lozano, Mario es_ES
dc.contributor.author Pérez Llopis, Israel es_ES
dc.contributor.author Esteve Domingo, Manuel es_ES
dc.date.accessioned 2024-07-01T18:37:33Z
dc.date.available 2024-07-01T18:37:33Z
dc.date.issued 2023-03-30 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205656
dc.description.abstract [EN] The number and the diversity in nature of daily cyber-attacks have increased in the last few years, and trends show that both will grow exponentially in the near future. Critical Infrastructures (CI) operators are not excluded from these issues; therefore, CIs' Security Departments must have their own group of IT specialists to prevent and respond to cyber-attacks. To introduce more challenges in the existing cyber security landscape, many attacks are unknown until they spawn, even a long time after their initial actions, posing increasing difficulties on their detection and remediation. To be reactive against those cyber-attacks, usually defined as zero-day attacks, organizations must have Threat Hunters at their security departments that must be aware of unusual behaviors and Modus Operandi. Threat Hunters must face vast amounts of data (mainly benign and repetitive, and following predictable patterns) in short periods to detect any anomaly, with the associated cognitive overwhelming. The application of Artificial Intelligence, specifically Machine Learning (ML) techniques, can remarkably impact the real-time analysis of those data. Not only that, but providing the specialists with useful visualizations can significantly increase the Threat Hunters' understanding of the issues that they are facing. Both of these can help to discriminate between harmless data and malicious data, alleviating analysts from the above-mentioned overload and providing means to enhance their Cyber Situational Awareness (CSA). This work aims to design a system architecture that helps Threat Hunters, using a Machine Learning approach and applying state-of-the-art visualization techniques in order to protect Critical Infrastructures based on a distributed, scalable and online configurable framework of interconnected modular components. es_ES
dc.description.sponsorship This work was supported by the European Commission s Project PRAETORIAN (Protection of Critical Infrastructures from advanced combined cyber and physical threats) under theHorizon 2020 Framework (Grant Agreement No. 101021274) es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Big Data and Cognitive Computing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Critical infrastructures protection es_ES
dc.subject Cyberattacks es_ES
dc.subject Machine learning es_ES
dc.subject Threat hunting es_ES
dc.subject Visualization models es_ES
dc.subject Architecture es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Threat Hunting Architecture Using a Machine Learning Approach for Critical Infrastructures Protection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/bdcc7020065 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101021274/EU/Protection of Critical Infrastructures from advanced combined cyber and physical threats/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Aragonés Lozano, M.; Pérez Llopis, I.; Esteve Domingo, M. (2023). Threat Hunting Architecture Using a Machine Learning Approach for Critical Infrastructures Protection. Big Data and Cognitive Computing. 7(2):1-26. https://doi.org/10.3390/bdcc7020065 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/bdcc7020065 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2504-2289 es_ES
dc.relation.pasarela S\486598 es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
upv.costeAPC 1760 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem