- -

Mobile robotics in smart farming: current trends and applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mobile robotics in smart farming: current trends and applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yépez-Ponce, Dario Fernando es_ES
dc.contributor.author Salcedo-Romero-de-Ávila, José-Vicente es_ES
dc.contributor.author Rosero-Montalvo, Paul D. es_ES
dc.contributor.author Sanchís Saez, Javier es_ES
dc.date.accessioned 2024-07-08T18:07:12Z
dc.date.available 2024-07-08T18:07:12Z
dc.date.issued 2023-08-31 es_ES
dc.identifier.uri http://hdl.handle.net/10251/205852
dc.description.abstract [EN] In recent years, precision agriculture and smart farming have been deployed by leaps and bounds as arable land has become increasingly scarce. According to the Food and Agriculture Organization (FAO), by the year 2050, farming in the world should grow by about one-third above current levels. Therefore, farmers have intensively used fertilizers to promote crop growth and yields, which has adversely affected the nutritional improvement of foodstuffs. To address challenges related to productivity, environmental impact, food safety, crop losses, and sustainability, mobile robots in agriculture have proliferated, integrating mainly path planning and crop information gathering processes. Current agricultural robotic systems are large in size and cost because they use a computer as a server and mobile robots as clients. This article reviews the use of mobile robotics in farming to reduce costs, reduce environmental impact, and optimize harvests. The current status of mobile robotics, the technologies employed, the algorithms applied, and the relevant results obtained in smart farming are established. Finally, challenges to be faced in new smart farming techniques are also presented: environmental conditions, implementation costs, technical requirements, process automation, connectivity, and processing potential. As part of the contributions of this article, it was possible to conclude that the leading technologies for the implementation of smart farming are as follows: the Internet of Things (IoT), mobile robotics, artificial intelligence, artificial vision, multi-objective control, and big data. One technological solution that could be implemented is developing a fully autonomous, low-cost agricultural mobile robotic system that does not depend on a server. es_ES
dc.description.sponsorship This work was supported by Generalitat Valenciana regional government through project CIAICO/2021/064. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media es_ES
dc.relation.ispartof Frontiers in Artificial Intelligence es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mobile robotics in agriculture es_ES
dc.subject Smart farming es_ES
dc.subject Path planning in agriculture es_ES
dc.subject IoT in agriculture es_ES
dc.subject Unmanned ground vehicle in agriculture es_ES
dc.subject Precision agriculture es_ES
dc.subject Intelligent agriculture es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Mobile robotics in smart farming: current trends and applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/frai.2023.1213330 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIAICO%2F2021%2F064//DESARROLLO DE HERRAMIENTAS DE OPTIMIZACION MULTIOBJETO PARA PROBLEMAS CON INCERTIDUMBRE. APLICACIÓN A PROBLEMAS DE CONTROL Y DE GESTION DE ENERGIA EN SISTEMAS MICROCHP BASADOS EN PILAR DE HIDROGENO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Yépez-Ponce, DF.; Salcedo-Romero-De-Ávila, J.; Rosero-Montalvo, PD.; Sanchís Saez, J. (2023). Mobile robotics in smart farming: current trends and applications. Frontiers in Artificial Intelligence. 6:1-13. https://doi.org/10.3389/frai.2023.1213330 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/frai.2023.1213330 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.eissn 2624-8212 es_ES
dc.identifier.pmid 37719082 es_ES
dc.identifier.pmcid PMC10500442 es_ES
dc.relation.pasarela S\499551 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
upv.costeAPC 2000 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem