Mostrar el registro sencillo del ítem
dc.contributor.author | Escribano, Pilar | es_ES |
dc.contributor.author | Ródenas, Juan | es_ES |
dc.contributor.author | García, Manuel | es_ES |
dc.contributor.author | Arias, Miguel A. | es_ES |
dc.contributor.author | Hidalgo, Víctor M. | es_ES |
dc.contributor.author | Calero, Sofía | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.date.accessioned | 2024-07-11T18:02:50Z | |
dc.date.available | 2024-07-11T18:02:50Z | |
dc.date.issued | 2024-02-15 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206002 | |
dc.description.abstract | [EN] Catheter ablation (CA) remains the cornerstone alternative to cardioversion for sinus rhythm (SR) restoration in patients with atrial fibrillation (AF). Unfortunately, despite the last methodological and technological advances, this procedure is not consistently effective in treating persistent AF. Beyond introducing new indices to characterize the fibrillatory waves (f -waves) recorded through the preoperative electrocardiogram (ECG), the aim of this study is to combine frequency- and time -domain features to improve CA outcome prediction and optimize patient selection for the procedure, given the absence of any study that jointly analyzes information from both domains. Precisely, the f -waves of 151 persistent AF patients undergoing their first CA procedure were extracted from standard V1 lead. Novel spectral and amplitude features were derived from these waves and combined through a machine learning algorithm to anticipate the intervention midterm outcome. The power rate index (phi), which estimates the power of the harmonic content regarding the dominant frequency (DF), yielded the maximum individual discriminant ability of 64% to discern between individuals who experienced a recurrence of AF and those who sustained SR after a 9 -month follow-up period. The predictive accuracy was improved up to 78.5% when this parameter phi was merged with the amplitude spectrum area in the DF bandwidth (AMSALF) and the normalized amplitude of the f -waves into a prediction model based on an ensemble classifier, built by random undersampling boosting of decision trees. This outcome suggests that the synthesis of both spectral and temporal features of the f -waves before CA might enrich the prognostic knowledge of this therapy for persistent AF patients. | es_ES |
dc.description.sponsorship | This research was financially supported from public grants PID2021-00X128525-IV0, PID2021-123804OB-I00, and TED2021-130935B-I00 of the Spanish Government 10.13 039/501100011033 jointly with the European Regional Development Fund (EU) , SBPLY/21/180501/000186 from Junta de Comunidades de Castilla-La Mancha, and AICO/2021/286 from Generalitat Valenciana. Furthermore, Pilar Escribano holds a 2020-PREDUCLM-15540 predoctoral scholarship, co-financed by the operating program of the European Social Fund (ESF) 2014-2020 of Castilla-La Mancha. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Heliyon | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Catheter ablation | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Electrocardiogram | es_ES |
dc.subject | Fibrillatory waves | es_ES |
dc.subject | Spectral analysis | es_ES |
dc.subject | Time-domain analysis | es_ES |
dc.subject | Predictive model | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Combination of frequency- and time-domain characteristics of the fibrillatory waves for enhanced prediction of persistent atrial fibrillation recurrence after catheter ablation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.heliyon.2024.e25295 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123804OB-I00/ES/INTELIGENCIA ARTIFICIAL PARA LA MEDICINA MOVIL INNOVADORA EN ENFERMEDADES CARDIOVASCULARES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F286/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F21%2F180501%2F000186/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UCLM//2020-PREDUCLM-15540/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2021-00X128525-IV0/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TED2021-130935B-I00/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Escribano, P.; Ródenas, J.; García, M.; Arias, MA.; Hidalgo, VM.; Calero, S.; Rieta, JJ.... (2024). Combination of frequency- and time-domain characteristics of the fibrillatory waves for enhanced prediction of persistent atrial fibrillation recurrence after catheter ablation. Heliyon. 10(3). https://doi.org/10.1016/j.heliyon.2024.e25295 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.heliyon.2024.e25295 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2405-8440 | es_ES |
dc.identifier.pmid | 38327415 | es_ES |
dc.identifier.pmcid | PMC10847938 | es_ES |
dc.relation.pasarela | S\522108 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universidad de Castilla-La Mancha | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |