Mostrar el registro sencillo del ítem
dc.contributor.author | Sanchez-Herrero, Sergio | es_ES |
dc.contributor.author | Calvet, Laura | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.date.accessioned | 2024-07-12T18:02:32Z | |
dc.date.available | 2024-07-12T18:02:32Z | |
dc.date.issued | 2023-10-14 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206067 | |
dc.description.abstract | [EN] Tacrolimus, characterized by a narrow therapeutic index, significant toxicity, adverse effects, and interindividual variability, necessitates frequent therapeutic drug monitoring and dose adjustments in renal transplant recipients. This study aimed to compare machine learning (ML) models utilizing pharmacokinetic data to predict tacrolimus blood concentration. This prediction underpins crucial dose adjustments, emphasizing patient safety. The investigation focuses on a pediatric cohort. A subset served as the derivation cohort, creating the dose-prediction algorithm, while the remaining data formed the validation cohort. The study employed various ML models, including artificial neural network, RandomForestRegressor, LGBMRegressor, XGBRegressor, AdaBoostRegressor, BaggingRegressor, ExtraTreesRegressor, KNeighborsRegressor, and support vector regression, and their performances were compared. Although all models yielded favorable fit outcomes, the ExtraTreesRegressor (ETR) exhibited superior performance. It achieved measures of ¿0.161 for MPE, 0.995 for AFE, 1.063 for AAFE, and 0.8 for R2 , indicating accurate predictions and meeting regulatory standards. The findings underscore ML¿s predictive potential, despite the limited number of samples available. To address this issue, resampling was utilized, offering a viable solution within medical datasets for developing this pioneering study to predict tacrolimus trough concentration in pediatric transplant recipients. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | BioMedInformatics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Pharmacokinetics | es_ES |
dc.subject | Therapeutic drug monitoring | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | Personalized medicine | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/biomedinformatics3040057 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Sanchez-Herrero, S.; Calvet, L.; Juan, AA. (2023). Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients. BioMedInformatics. 3(4). https://doi.org/10.3390/biomedinformatics3040057 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/biomedinformatics3040057 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2673-7426 | es_ES |
dc.relation.pasarela | S\510114 | es_ES |