- -

Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchez-Herrero, Sergio es_ES
dc.contributor.author Calvet, Laura es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.date.accessioned 2024-07-12T18:02:32Z
dc.date.available 2024-07-12T18:02:32Z
dc.date.issued 2023-10-14 es_ES
dc.identifier.uri http://hdl.handle.net/10251/206067
dc.description.abstract [EN] Tacrolimus, characterized by a narrow therapeutic index, significant toxicity, adverse effects, and interindividual variability, necessitates frequent therapeutic drug monitoring and dose adjustments in renal transplant recipients. This study aimed to compare machine learning (ML) models utilizing pharmacokinetic data to predict tacrolimus blood concentration. This prediction underpins crucial dose adjustments, emphasizing patient safety. The investigation focuses on a pediatric cohort. A subset served as the derivation cohort, creating the dose-prediction algorithm, while the remaining data formed the validation cohort. The study employed various ML models, including artificial neural network, RandomForestRegressor, LGBMRegressor, XGBRegressor, AdaBoostRegressor, BaggingRegressor, ExtraTreesRegressor, KNeighborsRegressor, and support vector regression, and their performances were compared. Although all models yielded favorable fit outcomes, the ExtraTreesRegressor (ETR) exhibited superior performance. It achieved measures of ¿0.161 for MPE, 0.995 for AFE, 1.063 for AAFE, and 0.8 for R2 , indicating accurate predictions and meeting regulatory standards. The findings underscore ML¿s predictive potential, despite the limited number of samples available. To address this issue, resampling was utilized, offering a viable solution within medical datasets for developing this pioneering study to predict tacrolimus trough concentration in pediatric transplant recipients. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof BioMedInformatics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Machine learning es_ES
dc.subject Pharmacokinetics es_ES
dc.subject Therapeutic drug monitoring es_ES
dc.subject Modeling es_ES
dc.subject Personalized medicine es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/biomedinformatics3040057 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Sanchez-Herrero, S.; Calvet, L.; Juan, AA. (2023). Machine Learning Models for Predicting Personalized Tacrolimus Stable Dosages in Pediatric Renal Transplant Patients. BioMedInformatics. 3(4). https://doi.org/10.3390/biomedinformatics3040057 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/biomedinformatics3040057 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2673-7426 es_ES
dc.relation.pasarela S\510114 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem