Mostrar el registro sencillo del ítem
dc.contributor.author | Costa-Sánchez, Mireia | es_ES |
dc.contributor.author | García-Simón, Alberto | es_ES |
dc.contributor.author | Pastor López, Oscar | es_ES |
dc.date.accessioned | 2024-07-12T18:02:37Z | |
dc.date.available | 2024-07-12T18:02:37Z | |
dc.date.issued | 2023-11-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206069 | |
dc.description.abstract | [EN] Background Genomics-based clinical diagnosis has emerged as a novel medical approach to improve diagnosis and treatment. However, advances in sequencing techniques have increased the generation of genomics data dramatically. This has led to several data management problems, one of which is data dispersion (i.e., genomics data is scattered across hundreds of data repositories). In this context, geneticists try to remediate the above-mentioned problem by limiting the scope of their work to a single data source they know and trust. This work has studied the consequences of focusing on a single data source rather than considering the many diferent existing genomics data sources. Methods The analysis is based on the data associated with two groups of disorders (i.e., oncology and cardiology) accessible from six well-known genomic data sources (i.e., ClinVar, Ensembl, GWAS Catalog, LOVD, CIViC, and CardioDB). Two dimensions have been considered in this analysis, namely, completeness and concordance. Completeness has been evaluated at two levels. First, by analyzing the information provided by each data source with regard to a conceptual schema data model (i.e., the schema level). Second, by analyzing the DNA variations provided by each data source as related to any of the disorders selected (i.e., the data level). Concordance has been evaluated by comparing the consensus among the data sources regarding the clinical relevance of each variation and disorder. Results The data sources with the highest completeness at the schema level are ClinVar, Ensembl, and CIViC. ClinVar has the highest completeness at the data level data source for the oncology and cardiology disorders. However, there are clinically relevant variations that are exclusive to other data sources, and they must be considered in order to provide the best clinical diagnosis. Although the information available in the data sources is predominantly concordant, discordance among the analyzed data exist. This can lead to inaccurate diagnoses. Conclusion Precision medicine analyses using a single genomics data source leads to incomplete results. Also, there are concordance problems that threaten the correctness of the genomics-based diagnosis results. | es_ES |
dc.description.sponsorship | This work was supported by the Valencian Innovation Agency and Innovation through the OGMIOS project (INNEST/2021/57), the Generalitat Valenciana through the CoMoDiD project (CIPROM/2021/023), and the GVA-Predoctoral Research Grant (ACIF/2021/117), and the Spanish State Research Agency through the DELFOS (PDC2021-121243-I00) and SREC (PID2021-123824OBI00) projects, MICIN/AEI/10.13039/501 100011033 and co-fnanced with ERDF and the European Union Next Generation EU/PRTR. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BMC Medical Informatics and Decision Making | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Precision medicine | es_ES |
dc.subject | DNA variations | es_ES |
dc.subject | Concordance | es_ES |
dc.subject | Completeness | es_ES |
dc.subject | Genomic data sources | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | The consequences of data dispersion in genomics: a comparative analysis of data sources for precision medicine | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s12911-023-02342-w | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121243-I00/ES/PLATAFORMA DELFOS: SISTEMA DE INFORMACION PARA LA GESTION DE VARIACIONES GENOMICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123824OB-I00/ES/DESARROLLO AGIL DE SISTEMAS DESDE REQUISITOS A CODIGO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIPROM%2F2021%2F023/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AVI//INNEST%2F2021%2F57/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIUCSD//ACIF%2F2021%2F117/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Costa-Sánchez, M.; García-Simón, A.; Pastor López, O. (2023). The consequences of data dispersion in genomics: a comparative analysis of data sources for precision medicine. BMC Medical Informatics and Decision Making. 23. https://doi.org/10.1186/s12911-023-02342-w | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s12911-023-02342-w | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.identifier.eissn | 1472-6947 | es_ES |
dc.identifier.pmid | 37946154 | es_ES |
dc.identifier.pmcid | PMC10636939 | es_ES |
dc.relation.pasarela | S\503256 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Agència Valenciana de la Innovació | es_ES |
dc.contributor.funder | Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana | es_ES |