- -

Interpreting deep learning models for glioma survival classification using visualization and textual explanations.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interpreting deep learning models for glioma survival classification using visualization and textual explanations.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Osadebey, Michael es_ES
dc.contributor.author Liu, Qinghui es_ES
dc.contributor.author Fuster García, Elíes es_ES
dc.contributor.author Emblem, Kyrre E. es_ES
dc.date.accessioned 2024-07-12T18:02:38Z
dc.date.available 2024-07-12T18:02:38Z
dc.date.issued 2023-10-18 es_ES
dc.identifier.uri http://hdl.handle.net/10251/206070
dc.description.abstract [EN] Background Saliency-based algorithms are able to explain the relationship between input image pixels and deeplearning model predictions. However, it may be difcult to assess the clinical value of the most important image features and the model predictions derived from the raw saliency map. This study proposes to enhance the interpret¿ ability of saliency-based deep learning model for survival classifcation of patients with gliomas, by extracting domain knowledge-based information from the raw saliency maps. Materials and methods Our study includes presurgical T1-weighted (pre- and post-contrast), T2-weighted and T2-FLAIR MRIs of 147 glioma patients from the BraTs 2020 challenge dataset aligned to the SRI 24 anatomical atlas. Each image exam includes a segmentation mask and the information of overall survival (OS) from time of diag¿ nosis (in days). This dataset was divided into training (n = 118) and validation (n = 29) datasets. The extent of surgi¿ cal resection for all patients was gross total resection. We categorized the data into 42 short (mean µ = 157 days), 30 medium (µ = 369 days), and 46 long (µ = 761 days) survivors. A 3D convolutional neural network (CNN) trained on brain tumour MRI volumes classifed all patients based on expected prognosis of either short-term, mediumterm, or long-term survival. We extend the popular 2D Gradient-weighted Class Activation Mapping (Grad-CAM), for the generation of saliency map, to 3D and combined it with the anatomical atlas, to extract brain regions, brain volume and probability map that reveal domain knowledge-based information. Results For each OS class, a larger tumor volume was associated with a shorter OS. There were 10, 7 and 27 tumor locations in brain regions that uniquely associate with the short-term, medium-term, and long-term survival, respec¿ tively. Tumors located in the transverse temporal gyrus, fusiform, and palladium are associated with short, medium and long-term survival, respectively. The visual and textual information displayed during OS prediction highlights tumor location and the contribution of diferent brain regions to the prediction of OS. This algorithm design feature assists the physician in analyzing and understanding diferent model prediction stages. Conclusions Domain knowledge-based information extracted from the saliency map can enhance the interpret¿ ability of deep learning models. Our fndings show that tumors overlapping eloquent brain regions are associated with short patient survival. es_ES
dc.description.sponsorship This work was supported by The European Union s Horizon 2020 Programmes ERC Grant Agreement No. 758657-ImPRESS, and Marie Skłodowska-Curie grant agreement (No 844646-GLIOHAB). The Norwegian Cancer Society and the Research Council of Norway Grants 303249, 261984, 325971. South-Eastern Norway Regional Health Authority Grants 2021057, 2013069, 2017073. Elies Fuster-Garcia was supported by Spanish State Research Agency, Subprogram for Knowledge Generation (PROGRESS, No PID2021-127110OA-I00). es_ES
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Medical Informatics and Decision Making es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Glioblastoma es_ES
dc.subject Magnetic Resonance Imaging (MR1) es_ES
dc.subject 3D Gradient Weighted Class Activation Mapping (3D-Grad-CAM) es_ES
dc.subject Deep learning es_ES
dc.subject Convolutional Neural Network (CNN) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Interpreting deep learning models for glioma survival classification using visualization and textual explanations. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12911-023-02320-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/758657/EU/Imaging Perfusion Restrictions from Extracellular Solid Stress/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/844646/EU/Multiparametric imaging of glioblastoma tumour heterogeneity for supporting treatment decisions and accurate prognostic estimation/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-127110OA-I00//EVALUACIÓN MULTIPARAMÉTRICA DE LA PROGRESIÓN DE LOS TUMORES CEREBRALES BASADA EN LA IA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA VALENCIANA DE LA INNOVACION//INNEST%2F2022%2F87//PLANIFICACIÓN DE INTERVENCIONES QUIRÚRGICAS DE PRECISIÓN GUIADOS POR HÁBITATS IDENTITARIOS DE TUMORES GLIALES HABILITANDO DECISIONES (SINUE)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIAICO%2F2022%2F064//MONITORIZACION DE LA CALIDAD DE VIDA RELACIONADA CON LA SALUD (CVRS) DE PACIENTES CON GLIOBLASTOMA MEDIANTE SMARTPHONES PARA APOYAR LA TOMA DE DECISIONES EN EL TRATAMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RCN// 261984/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RCN//325971/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RCN// 303249/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/South-Eastern Norway Regional Health Authority//2021057/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/South-Eastern Norway Regional Health Authority//2013069/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/South-Eastern Norway Regional Health Authority//2017073/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Osadebey, M.; Liu, Q.; Fuster García, E.; Emblem, KE. (2023). Interpreting deep learning models for glioma survival classification using visualization and textual explanations. BMC Medical Informatics and Decision Making. 23(1). https://doi.org/10.1186/s12911-023-02320-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12911-023-02320-2 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1472-6947 es_ES
dc.identifier.pmid 37853371 es_ES
dc.identifier.pmcid PMC10583453 es_ES
dc.relation.pasarela S\502973 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Research Council of Norway es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder AGENCIA VALENCIANA DE LA INNOVACION es_ES
dc.contributor.funder South-Eastern Norway Regional Health Authority es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem