Mostrar el registro sencillo del ítem
dc.contributor.author | Osadebey, Michael | es_ES |
dc.contributor.author | Liu, Qinghui | es_ES |
dc.contributor.author | Fuster García, Elíes | es_ES |
dc.contributor.author | Emblem, Kyrre E. | es_ES |
dc.date.accessioned | 2024-07-12T18:02:38Z | |
dc.date.available | 2024-07-12T18:02:38Z | |
dc.date.issued | 2023-10-18 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206070 | |
dc.description.abstract | [EN] Background Saliency-based algorithms are able to explain the relationship between input image pixels and deeplearning model predictions. However, it may be difcult to assess the clinical value of the most important image features and the model predictions derived from the raw saliency map. This study proposes to enhance the interpret¿ ability of saliency-based deep learning model for survival classifcation of patients with gliomas, by extracting domain knowledge-based information from the raw saliency maps. Materials and methods Our study includes presurgical T1-weighted (pre- and post-contrast), T2-weighted and T2-FLAIR MRIs of 147 glioma patients from the BraTs 2020 challenge dataset aligned to the SRI 24 anatomical atlas. Each image exam includes a segmentation mask and the information of overall survival (OS) from time of diag¿ nosis (in days). This dataset was divided into training (n = 118) and validation (n = 29) datasets. The extent of surgi¿ cal resection for all patients was gross total resection. We categorized the data into 42 short (mean µ = 157 days), 30 medium (µ = 369 days), and 46 long (µ = 761 days) survivors. A 3D convolutional neural network (CNN) trained on brain tumour MRI volumes classifed all patients based on expected prognosis of either short-term, mediumterm, or long-term survival. We extend the popular 2D Gradient-weighted Class Activation Mapping (Grad-CAM), for the generation of saliency map, to 3D and combined it with the anatomical atlas, to extract brain regions, brain volume and probability map that reveal domain knowledge-based information. Results For each OS class, a larger tumor volume was associated with a shorter OS. There were 10, 7 and 27 tumor locations in brain regions that uniquely associate with the short-term, medium-term, and long-term survival, respec¿ tively. Tumors located in the transverse temporal gyrus, fusiform, and palladium are associated with short, medium and long-term survival, respectively. The visual and textual information displayed during OS prediction highlights tumor location and the contribution of diferent brain regions to the prediction of OS. This algorithm design feature assists the physician in analyzing and understanding diferent model prediction stages. Conclusions Domain knowledge-based information extracted from the saliency map can enhance the interpret¿ ability of deep learning models. Our fndings show that tumors overlapping eloquent brain regions are associated with short patient survival. | es_ES |
dc.description.sponsorship | This work was supported by The European Union s Horizon 2020 Programmes ERC Grant Agreement No. 758657-ImPRESS, and Marie Skłodowska-Curie grant agreement (No 844646-GLIOHAB). The Norwegian Cancer Society and the Research Council of Norway Grants 303249, 261984, 325971. South-Eastern Norway Regional Health Authority Grants 2021057, 2013069, 2017073. Elies Fuster-Garcia was supported by Spanish State Research Agency, Subprogram for Knowledge Generation (PROGRESS, No PID2021-127110OA-I00). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BMC Medical Informatics and Decision Making | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Glioblastoma | es_ES |
dc.subject | Magnetic Resonance Imaging (MR1) | es_ES |
dc.subject | 3D Gradient Weighted Class Activation Mapping (3D-Grad-CAM) | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Convolutional Neural Network (CNN) | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Interpreting deep learning models for glioma survival classification using visualization and textual explanations. | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s12911-023-02320-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/758657/EU/Imaging Perfusion Restrictions from Extracellular Solid Stress/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/844646/EU/Multiparametric imaging of glioblastoma tumour heterogeneity for supporting treatment decisions and accurate prognostic estimation/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2021-127110OA-I00//EVALUACIÓN MULTIPARAMÉTRICA DE LA PROGRESIÓN DE LOS TUMORES CEREBRALES BASADA EN LA IA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA VALENCIANA DE LA INNOVACION//INNEST%2F2022%2F87//PLANIFICACIÓN DE INTERVENCIONES QUIRÚRGICAS DE PRECISIÓN GUIADOS POR HÁBITATS IDENTITARIOS DE TUMORES GLIALES HABILITANDO DECISIONES (SINUE)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIAICO%2F2022%2F064//MONITORIZACION DE LA CALIDAD DE VIDA RELACIONADA CON LA SALUD (CVRS) DE PACIENTES CON GLIOBLASTOMA MEDIANTE SMARTPHONES PARA APOYAR LA TOMA DE DECISIONES EN EL TRATAMIENTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN// 261984/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN//325971/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN// 303249/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/South-Eastern Norway Regional Health Authority//2021057/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/South-Eastern Norway Regional Health Authority//2013069/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/South-Eastern Norway Regional Health Authority//2017073/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Osadebey, M.; Liu, Q.; Fuster García, E.; Emblem, KE. (2023). Interpreting deep learning models for glioma survival classification using visualization and textual explanations. BMC Medical Informatics and Decision Making. 23(1). https://doi.org/10.1186/s12911-023-02320-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s12911-023-02320-2 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1472-6947 | es_ES |
dc.identifier.pmid | 37853371 | es_ES |
dc.identifier.pmcid | PMC10583453 | es_ES |
dc.relation.pasarela | S\502973 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Research Council of Norway | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | AGENCIA VALENCIANA DE LA INNOVACION | es_ES |
dc.contributor.funder | South-Eastern Norway Regional Health Authority | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |