Mostrar el registro sencillo del ítem
dc.contributor.author | Li, Shengguo | es_ES |
dc.contributor.author | Liao, Xia | es_ES |
dc.contributor.author | Lu, Yutong | es_ES |
dc.contributor.author | Roman, Jose E. | es_ES |
dc.contributor.author | Yue, Xiaoqiang | es_ES |
dc.date.accessioned | 2024-07-17T18:07:58Z | |
dc.date.available | 2024-07-17T18:07:58Z | |
dc.date.issued | 2023 | es_ES |
dc.identifier.issn | 2524-4922 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206280 | |
dc.description.abstract | [EN] In this paper, a novel parallel structured divide-and-conquer (DC) algorithm is proposed for symmetric banded eigenvalue problems, denoted by PBSDC, which modifes the classical parallel banded DC (PBDC) algorithm by reducing its computational cost. The main tool that PBSDC uses is a parallel structured matrix multiplication algorithm (PSMMA), which can be much faster than the general dense matrix multiplication ScaLAPACK routine PDGEMM. Numerous experiments have been performed on Tianhe-2 supercomputer to compare PBSDC with PBDC and ELPA. For matrices with few defations, PBSDC can be much faster than PBDC since computations are saved. For matrices with many defations and/or small bandwidths, PBSDC can be faster than the tridiagonalization-based DC implemented in LAPACK and ELPA. However, PBSDC would become slower than ELPA for matrices with relatively large bandwidths. | es_ES |
dc.description.sponsorship | The authors would like to thank the referees for their valuable comments. This work is supported in part by NSFC (No. 2021YFB0300101, 62073333, 61902411, 62032023, 12002382, 11275269, 42104078), 173 Program of China (2020-JCJQ-ZD-029), Open Research Fund from State Key Laboratory of High Performance Computing of China (HPCL) (No. 202101-01), Guangdong Natural Science Foundation (2018B030312002), and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant (No. 2016ZT06D211). Jose E. Roman is supported by the Spanish Agencia Estatal de Investigacion (AEI) under project SLEPc-DA (PID2019-107379RB-I00). On behalf of all authors, the corresponding author states that there is no conflict of interest. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | CCF Transactions on High Performance Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ScaLAPACK | es_ES |
dc.subject | Divide-and-conquer | es_ES |
dc.subject | PSMMA | es_ES |
dc.subject | PBSDC | es_ES |
dc.subject | Distributed-memory parallel algorithm | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | A parallel structured banded DC algorithm for symmetric eigenvalue problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s42514-022-00117-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//42104078/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//2021YFB0300101/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//62073333/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//61902411/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//62032023/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//12002382/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//11275269/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2018B030312002/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2016ZT06D211/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NKRDPC//2020-JCJQ-ZD-029/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Key Laboratory of High Performance Computing and Stochastic Information Processing//202101-01/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Li, S.; Liao, X.; Lu, Y.; Roman, JE.; Yue, X. (2023). A parallel structured banded DC algorithm for symmetric eigenvalue problems. CCF Transactions on High Performance Computing. 5:116-128. https://doi.org/10.1007/s42514-022-00117-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s42514-022-00117-9 | es_ES |
dc.description.upvformatpinicio | 116 | es_ES |
dc.description.upvformatpfin | 128 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.relation.pasarela | S\496562 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Natural Science Foundation of Guangdong Province | es_ES |
dc.contributor.funder | National Key Research and Development Program of China | es_ES |
dc.contributor.funder | Key Laboratory of High Performance Computing and Stochastic Information Processing | es_ES |