Mostrar el registro sencillo del ítem
dc.contributor.author | Faba, Simón | es_ES |
dc.contributor.author | Agüero, Ángel | es_ES |
dc.contributor.author | Arrieta, Marina P. | es_ES |
dc.contributor.author | Martínez, Sara | es_ES |
dc.contributor.author | Romero, Julio | es_ES |
dc.contributor.author | Torres, Alejandra | es_ES |
dc.contributor.author | Galotto, María José | es_ES |
dc.date.accessioned | 2024-07-17T18:08:07Z | |
dc.date.available | 2024-07-17T18:08:07Z | |
dc.date.issued | 2024-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206284 | |
dc.description.abstract | [EN] In the last decade, among the emerging technologies in the area of bioplastics, additive manufacturing (AM), commonly referred to as 3D printing, stands out. This technology has gained great interest in the development of new products, mainly due to its capability to easily produce customized and low-cost plastic products. This work aims to evaluate the effect of supercritical foaming of 3D-printed parts based on a commercial PLA matrix loaded with calcium carbonate, for single-use sustainable food contact materials. 3D-printed PLA/CaCO3 parts were obtained by 3D printing with a 20% and 80% infill, and two infill patterns, rectilinear and triangular, were set for each of the infill percentages selected. Supercritical fluid foaming of PLA/CaCO3 composite printed parts was performed using a pressure of 25 MPa, a temperature of 130 degrees C for 23 min, with a fast depressurization rate (1 s). Closed-cell foams were achieved and the presence of CaCO3 did not influence the surface of the foams or the cell walls, and no agglomerations were observed. Foam samples with 80% infill showed subtle temperature fluctuations, and thermogravimetric analysis showed that samples were thermally stable up to similar to 300 degrees C, while the maximum degradation temperature was around 365 degrees C. Finally, tensile test analysis showed that for lower infill contents, the foams showed lower mechanical performance, while the 80% infill and triangular pattern produced foams with good mechanical performance. These results emphasize the interest in using the supercritical CO2 process to easily produce foams from 3D-printed parts. These materials represent a sustainable alternative for replacing non-biodegradable materials such as Expanded Polystyrene, and they are a promising option for use in many industrial applications, such as contact materials. | es_ES |
dc.description.sponsorship | Simón Faba gratefully acknowledges the National Commission for Scientific and Technological Research, ANID, for its financial support from the Postdoctoral Scholarship abroad (grant number 74230053). Authors thank the financial support of CEDENNA (AFB 220001 Project) and the Spanish Ministry of Science and Innovation (MICINN) through the PID-AEI project (grant PID2021-123753NA-C32) funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe by the European Union as well as the TED-AEI project (grant TED-129920A-C43) and Research consolidation project (grant CNS2022-136064) funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR . Ángel Agüero acknowledges the Margarita Salas post-doctoral grant from the Ministerio de Universidades, Spain, funded by the Recovery, Transformation, and Resilience Plan financed by the European Union NextGenerationEU. The co-financing of the project FONDECYT-ANID (grant number 1230795) is also acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Polymers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | 3D printing | es_ES |
dc.subject | Foams | es_ES |
dc.subject | Poly(lactic acid) | es_ES |
dc.subject | Supercritical CO2 | es_ES |
dc.title | Foaming of 3D-Printed PLA/CaCO3 Composites by Supercritical CO2 Process for Sustainable Food Contact Materials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/polym16060798 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123753NA-C32/ES/ESTUDIO DE LA OBTENCION DE REFUERZOS ACTIVOS PARA BIOPOLIMEROS EN LA ECONOMIA CIRCULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1230795/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANID//74230053/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TED2021-129920A-C43/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CNS2022-136064/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CEDENNA//AFB 220001/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Faba, S.; Agüero, Á.; Arrieta, MP.; Martínez, S.; Romero, J.; Torres, A.; Galotto, MJ. (2024). Foaming of 3D-Printed PLA/CaCO3 Composites by Supercritical CO2 Process for Sustainable Food Contact Materials. Polymers. 16(6). https://doi.org/10.3390/polym16060798 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/polym16060798 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 2073-4360 | es_ES |
dc.identifier.pmid | 38543404 | es_ES |
dc.identifier.pmcid | PMC10974494 | es_ES |
dc.relation.pasarela | S\521003 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Universidades | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | UNIVERSIDAD POLITECNICA DE VALENCIA | es_ES |
dc.contributor.funder | Agencia Nacional de Investigación y Desarrollo de Chile | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.contributor.funder | Centro para el Desarrollo de la Nanociencia y la Nanotecnología | es_ES |