- -

An Unsupervised Generative Adversarial Network System to Detect DDoS Attacks in SDN

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Unsupervised Generative Adversarial Network System to Detect DDoS Attacks in SDN

Mostrar el registro completo del ítem

Lent, DMB.; Ruffo, VGDS.; Carvalho, LF.; Lloret, J.; Rodrigues, JJPC.; Proença Jr., ML. (2024). An Unsupervised Generative Adversarial Network System to Detect DDoS Attacks in SDN. IEEE Access. 12:70690-70706. https://doi.org/10.1109/ACCESS.2024.3402069

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/206446

Ficheros en el ítem

Metadatos del ítem

Título: An Unsupervised Generative Adversarial Network System to Detect DDoS Attacks in SDN
Autor: Lent, Daniel M. Brandao Ruffo, Vitor G. da Silva Carvalho, Luiz F. Lloret, Jaime Rodrigues, Joel J. P. C. Proença Jr., Mario Lemes
Entidad UPV: Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Fecha difusión:
Resumen:
[EN] Network management is a crucial task to maintain modern systems and applications running. Some applications have become vital for society and are expected to have zero downtime. Software-defined networks is a paradigm ...[+]
Palabras clave: Logic gates , Generators , Generative adversarial networks , Control systems , Neurons , Training , Biological neural networks , Anomaly detection , Deep learning , Software defined networking , Software-defined networks
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
IEEE Access. (eissn: 2169-3536 )
DOI: 10.1109/ACCESS.2024.3402069
Editorial:
Institute of Electrical and Electronics Engineers
Versión del editor: https://doi.org/10.1109/ACCESS.2024.3402069
Código del Proyecto:
info:eu-repo/grantAgreement/CNPq//306607%2F2023-9/
info:eu-repo/grantAgreement/CNPq//306397%2F2022-6/
Agradecimientos:
This work was supported in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grant 306397/2022-6 and Grant 306607/2023-9; in part by the Coordination for the Improvement of ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem