Mostrar el registro sencillo del ítem
dc.contributor.author | Segovia-Aguas, Javier | es_ES |
dc.contributor.author | Jiménez-Celorrio, Sergio | es_ES |
dc.contributor.author | Jonsson, Anders | es_ES |
dc.date.accessioned | 2024-07-19T18:06:16Z | |
dc.date.available | 2024-07-19T18:06:16Z | |
dc.date.issued | 2024-05 | es_ES |
dc.identifier.issn | 0004-3702 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206457 | |
dc.description.abstract | [EN] Planning as heuristic search is one of the most successful approaches to classical planning but unfortunately, it does not trivially extend to Generalized Planning (GP); GP aims to compute algorithmic solutions that are valid for a set of classical planning instances from a given domain, even if these instances differ in their number of objects, the initial and goal configuration of these objects and hence, in the number (and possible values) of the state variables. State -space search, as it is implemented by heuristic planners, becomes then impractical for GP. In this paper we adapt the planning as heuristic search paradigm to the generalization requirements of GP, and present the first native heuristic search approach to GP. First, the paper introduces a new pointerbased solution space for GP that is independent of the number of classical planning instances in a GP problem and the size of those instances (i.e. the number of objects, state variables and their domain sizes). Second, the paper defines an upgraded version of our GP algorithm, called Best -First Generalized Planning (BFGP), that implements a best -first search in our pointer -based solution space for GP. Lastly, the paper defines a set of evaluation and heuristic functions for BFGP that assess the structural complexity of the candidate GP solutions, as well as their fitness to a given input set of classical planning instances. The computation of these evaluation and heuristic functions does not require grounding states or actions in advance. Therefore our GP as heuristic search approach can handle large sets of state variables with large numerical domains, e.g. integers. | es_ES |
dc.description.sponsorship | This work has been co-funded by MCIN/AEI/10.13039/501100011033 under the Maria de Maeztu Units of Excellence Programme (CEX2021-001195-M) , TAILOR (H2020 #952215) and AIPLAN4EU (H2020 #101016442) projects. Javier Segovia-Aguas is also supported by AGAUR SGR and the Spanish grant PID2019-108141 GB-I00. Sergio Jimenez is supported by the Spanish MINECO project PID2021-127647NB-C22. Anders Jonsson is partially supported by Spanish grant PID2019-108141 GB-I00. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Artificial Intelligence | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Generalized planning | es_ES |
dc.subject | Classical planning | es_ES |
dc.subject | Heuristic search | es_ES |
dc.subject | Planning and learning | es_ES |
dc.subject | Domain-specific control knowledge | es_ES |
dc.subject | Program synthesis | es_ES |
dc.subject | Programming by example | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Generalized planning as heuristic search: A new planning search-space that leverages pointers over objects | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.artint.2024.104097 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108141GB-I00/ES/APRENDIZAJE Y PLANIFICACION CONTINUA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127647NB-C22/ES/APRENDIZAJE PARA PLANIFICACION SENSIBLE AL HUMANO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101016442/EU/Bringing AI Planning to the European AI On-Demand Platform/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/952215/EU/Integrating Reasoning, Learning and Optimization/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//CEX2021-001195-M/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Segovia-Aguas, J.; Jiménez-Celorrio, S.; Jonsson, A. (2024). Generalized planning as heuristic search: A new planning search-space that leverages pointers over objects. Artificial Intelligence. 330. https://doi.org/10.1016/j.artint.2024.104097 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.artint.2024.104097 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 330 | es_ES |
dc.relation.pasarela | S\522470 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |