- -

Generalized planning as heuristic search: A new planning search-space that leverages pointers over objects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generalized planning as heuristic search: A new planning search-space that leverages pointers over objects

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Segovia-Aguas, Javier es_ES
dc.contributor.author Jiménez-Celorrio, Sergio es_ES
dc.contributor.author Jonsson, Anders es_ES
dc.date.accessioned 2024-07-19T18:06:16Z
dc.date.available 2024-07-19T18:06:16Z
dc.date.issued 2024-05 es_ES
dc.identifier.issn 0004-3702 es_ES
dc.identifier.uri http://hdl.handle.net/10251/206457
dc.description.abstract [EN] Planning as heuristic search is one of the most successful approaches to classical planning but unfortunately, it does not trivially extend to Generalized Planning (GP); GP aims to compute algorithmic solutions that are valid for a set of classical planning instances from a given domain, even if these instances differ in their number of objects, the initial and goal configuration of these objects and hence, in the number (and possible values) of the state variables. State -space search, as it is implemented by heuristic planners, becomes then impractical for GP. In this paper we adapt the planning as heuristic search paradigm to the generalization requirements of GP, and present the first native heuristic search approach to GP. First, the paper introduces a new pointerbased solution space for GP that is independent of the number of classical planning instances in a GP problem and the size of those instances (i.e. the number of objects, state variables and their domain sizes). Second, the paper defines an upgraded version of our GP algorithm, called Best -First Generalized Planning (BFGP), that implements a best -first search in our pointer -based solution space for GP. Lastly, the paper defines a set of evaluation and heuristic functions for BFGP that assess the structural complexity of the candidate GP solutions, as well as their fitness to a given input set of classical planning instances. The computation of these evaluation and heuristic functions does not require grounding states or actions in advance. Therefore our GP as heuristic search approach can handle large sets of state variables with large numerical domains, e.g. integers. es_ES
dc.description.sponsorship This work has been co-funded by MCIN/AEI/10.13039/501100011033 under the Maria de Maeztu Units of Excellence Programme (CEX2021-001195-M) , TAILOR (H2020 #952215) and AIPLAN4EU (H2020 #101016442) projects. Javier Segovia-Aguas is also supported by AGAUR SGR and the Spanish grant PID2019-108141 GB-I00. Sergio Jimenez is supported by the Spanish MINECO project PID2021-127647NB-C22. Anders Jonsson is partially supported by Spanish grant PID2019-108141 GB-I00. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Artificial Intelligence es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Generalized planning es_ES
dc.subject Classical planning es_ES
dc.subject Heuristic search es_ES
dc.subject Planning and learning es_ES
dc.subject Domain-specific control knowledge es_ES
dc.subject Program synthesis es_ES
dc.subject Programming by example es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Generalized planning as heuristic search: A new planning search-space that leverages pointers over objects es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.artint.2024.104097 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108141GB-I00/ES/APRENDIZAJE Y PLANIFICACION CONTINUA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127647NB-C22/ES/APRENDIZAJE PARA PLANIFICACION SENSIBLE AL HUMANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101016442/EU/Bringing AI Planning to the European AI On-Demand Platform/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/952215/EU/Integrating Reasoning, Learning and Optimization/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//CEX2021-001195-M/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Segovia-Aguas, J.; Jiménez-Celorrio, S.; Jonsson, A. (2024). Generalized planning as heuristic search: A new planning search-space that leverages pointers over objects. Artificial Intelligence. 330. https://doi.org/10.1016/j.artint.2024.104097 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.artint.2024.104097 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 330 es_ES
dc.relation.pasarela S\522470 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem