Mostrar el registro sencillo del ítem
dc.contributor.author | Okada, Susumu | es_ES |
dc.contributor.author | Rodríguez, J. | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.date.accessioned | 2024-07-24T18:03:00Z | |
dc.date.available | 2024-07-24T18:03:00Z | |
dc.date.issued | 2024 | es_ES |
dc.identifier.issn | 0039-3223 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206593 | |
dc.description.abstract | [EN] We study some aspects of countably additive vector measures with values in l(infinity) and the Banach lattices of real-valued functions that are integrable with respect to such a vector measure. On the one hand, we prove that if W subset of l*(infinity) is a total set not containing sets equivalent to the canonical basis of l(1)(c), then there is a non-countablyadditive l(infinity)-valued map nu defined on a sigma-algebra such that the composition x* (degrees) nu is countably additive for every x* is an element of W. On the other hand, we show that a Banach lattice E is separable whenever it admits a countable, positively norming set and both E and E* are order continuous. As a consequence, if nu is a countably additive vector measure defined on a sigma-algebra and taking values in a separable Banach space, then the space L-1(nu) is separable whenever L-1(nu)* is order continuous. | es_ES |
dc.description.sponsorship | The research of J. Rodriguez was partially supported by grants MTM2017-86182-P (funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe") and 21955/PI/22 (funded by Fundacion Seneca - ACyT Region de Murcia)., The research of E. A. Sanchez-Perez was partially supported by grant PID2020-112759GB-I00 funded by MCIN/AEI/10.13039/501100011033. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Mathematics, Polish Academy of Sciences | es_ES |
dc.relation.ispartof | Studia Mathematica | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Vector measure | es_ES |
dc.subject | Space of integrable functions | es_ES |
dc.subject | Banach lattice | es_ES |
dc.subject | Positively norming set | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On vector measures with values in L (infinity) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4064/sm230319-14-12 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PID2020-112759GB-I00//METAESTRUCTURAS HIPERUNIFORMES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.description.bibliographicCitation | Okada, S.; Rodríguez, J.; Sánchez Pérez, EA. (2024). On vector measures with values in L (infinity). Studia Mathematica. 274(2). https://doi.org/10.4064/sm230319-14-12 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.4064/sm230319-14-12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 274 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\521067 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |