- -

On vector measures with values in L (infinity)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On vector measures with values in L (infinity)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Okada, Susumu es_ES
dc.contributor.author Rodríguez, J. es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2024-07-24T18:03:00Z
dc.date.available 2024-07-24T18:03:00Z
dc.date.issued 2024 es_ES
dc.identifier.issn 0039-3223 es_ES
dc.identifier.uri http://hdl.handle.net/10251/206593
dc.description.abstract [EN] We study some aspects of countably additive vector measures with values in l(infinity) and the Banach lattices of real-valued functions that are integrable with respect to such a vector measure. On the one hand, we prove that if W subset of l*(infinity) is a total set not containing sets equivalent to the canonical basis of l(1)(c), then there is a non-countablyadditive l(infinity)-valued map nu defined on a sigma-algebra such that the composition x* (degrees) nu is countably additive for every x* is an element of W. On the other hand, we show that a Banach lattice E is separable whenever it admits a countable, positively norming set and both E and E* are order continuous. As a consequence, if nu is a countably additive vector measure defined on a sigma-algebra and taking values in a separable Banach space, then the space L-1(nu) is separable whenever L-1(nu)* is order continuous. es_ES
dc.description.sponsorship The research of J. Rodriguez was partially supported by grants MTM2017-86182-P (funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe") and 21955/PI/22 (funded by Fundacion Seneca - ACyT Region de Murcia)., The research of E. A. Sanchez-Perez was partially supported by grant PID2020-112759GB-I00 funded by MCIN/AEI/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Mathematics, Polish Academy of Sciences es_ES
dc.relation.ispartof Studia Mathematica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Vector measure es_ES
dc.subject Space of integrable functions es_ES
dc.subject Banach lattice es_ES
dc.subject Positively norming set es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On vector measures with values in L (infinity) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4064/sm230319-14-12 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PID2020-112759GB-I00//METAESTRUCTURAS HIPERUNIFORMES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Okada, S.; Rodríguez, J.; Sánchez Pérez, EA. (2024). On vector measures with values in L (infinity). Studia Mathematica. 274(2). https://doi.org/10.4064/sm230319-14-12 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.4064/sm230319-14-12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 274 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\521067 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem