- -

Harnessing prion-inspired amyloid self-assembly for sustainable and biocompatible proton conductivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Harnessing prion-inspired amyloid self-assembly for sustainable and biocompatible proton conductivity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro, Susana es_ES
dc.contributor.author Andrio, A. es_ES
dc.contributor.author Diaz-Caballero, Marta es_ES
dc.contributor.author Ventura, Salvador es_ES
dc.contributor.author Compañ, Vicente es_ES
dc.date.accessioned 2024-07-26T18:10:23Z
dc.date.available 2024-07-26T18:10:23Z
dc.date.issued 2024-05-14 es_ES
dc.identifier.uri http://hdl.handle.net/10251/206693
dc.description.abstract [EN] Protein-based materials have emerged as promising candidates for proton-conducting biomaterials. Therefore, drawing inspiration from the amino acid composition of prion-like domains, we designed short self-assembling peptides incorporating the (X-Tyr) motif, with X representing Asn, Gly and Ser, which form fibrillar structures capable of conducting protons. In this study, we conducted an analysis of the conductivity capacity of these fibers, with a focus on temperature and frequency dependence of conductivity. The loss tangent curves data and the electrode polarization model with the Debye approximation were employed to calculate transport properties, including conductivity, diffusivity, and density of charge carriers. Results revealed the prion-like fibers can transport protons more efficiently than biomaterials and other synthetic proton conducting materials, and that a significant increase in conductivity is observed with fibrillar orientations. The temperature dependence of conductivity of the peptides, measured in wet conditions, showed conductivities following the trend sigma(NY7) < sigma(GY7) < sigma(SY7), in all the range of temperatures studied. The Arrhenius behavior, and the activation energy associated with conductivity followed the trend: E-act (SY7) = 8.2 +/- 0.6 kJ mol(-1) < E-act (GY7) < 13 +/- 5 kJ mol(-1) < E-act (NY7) = 31 +/- 7 kJ mol(-1), in different range of temperatures depending of the peptide. Furthermore, the diffusion coefficient correlated with increasing temperature in GY7 and SY7 fibers for temperatures compress between 20 degrees C and 80 degrees C, while NY7 only below 60 degrees C. However, it is noteworthy that the diffusivity observed in the SY7 peptide is lower, compared to GY7 and NY7 presumably due to its enlarged length. This observation can be attributed to two factors: firstly, the higher conductivity values observed in SY7 compared to GY7 and NY7, and secondly, to the value of relation observed of cations present in the peptide SY7 compared with GY7 and NY7, which in turn is dependent on temperature. In light of these findings, we envision our prion-inspired nanofibers as highly efficient proton-conducting natural biopolymers that are both biocompatible and biodegradable. These properties provide the opportunity for the development of next-generation bioelectrical interfaces and protonic devices. es_ES
dc.description.sponsorship We want to acknowledge to Generalitat Valenciana (PROMETEO 2023. CIPROM/2022/03) by V. C., the Spanish Ministry of Science and Innovation by the project number PID 2019-107137 RB-C2, and PID2019-105017RB-I00 by S. V. and S. N. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Nanoscale Advances es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Protein-based materials es_ES
dc.subject Proton-conducting biomaterials es_ES
dc.subject Amino acid composition es_ES
dc.subject Polarization es_ES
dc.subject Impedance spectroscopy es_ES
dc.title Harnessing prion-inspired amyloid self-assembly for sustainable and biocompatible proton conductivity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d4na00303a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105017RB-I00/ES/AGREGACION DE PROTEINAS: APLICACIONES BIOMEDICAS Y BIOTECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107137RB-C22/ES/MEJORANDO LA PRODUCCION DE ENERGIA SOLAR CON MATERIALES SEMICONDUCTORES BASADOS EN PEROVSKITAS INORGANICAS-CALCULOS CUANTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIPROM%2F2022%2F03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO 2023/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Navarro, S.; Andrio, A.; Diaz-Caballero, M.; Ventura, S.; Compañ, V. (2024). Harnessing prion-inspired amyloid self-assembly for sustainable and biocompatible proton conductivity. Nanoscale Advances. 6(10):2669-2681. https://doi.org/10.1039/d4na00303a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d4na00303a es_ES
dc.description.upvformatpinicio 2669 es_ES
dc.description.upvformatpfin 2681 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2516-0230 es_ES
dc.identifier.pmid 38752140 es_ES
dc.identifier.pmcid PMC11093263 es_ES
dc.relation.pasarela S\522990 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem