- -

Improving Insertion Loss of Sonic Crystal Active Noise Barrier by Reinforcement Learning and Finite Difference Time Domain Simulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving Insertion Loss of Sonic Crystal Active Noise Barrier by Reinforcement Learning and Finite Difference Time Domain Simulations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramírez-Solana, David es_ES
dc.contributor.author Galiana-Nieves, Jaime es_ES
dc.contributor.author Redondo, Javier es_ES
dc.contributor.author Mangini, Agostino Marcello es_ES
dc.contributor.author Fanti, Maria Pia es_ES
dc.date.accessioned 2024-07-26T18:10:29Z
dc.date.available 2024-07-26T18:10:29Z
dc.date.issued 2024-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/206696
dc.description.abstract [EN] Sonic crystal noise barriers (SCNB) have emerged as a promising solution for mitigating traffic noise pollution. These barriers utilize periodic structures to selectively reflect acoustic waves at specific target frequencies, offering the advantage of being permeable to light and wind. However, their installation and maintenance costs have hindered widespread adoption. In contrast, active noise control (ANC) systems leverage speakers and microphones to generate opposing sound waves that cancel out incoming noise, presenting a potentially cost-effective alternative. The efficacy of ANC, however, hinges on the precision of noise prediction models and control algorithms. Reinforcement Learning (RL) technique, an interdisciplinary area of machine learning, has shown promise in enhancing ANC systems by enabling them to adapt to changing noise conditions and achieve superior noise reduction, particularly in enclosed spaces. Despite these advancements, several challenges remain in applying RL to ANC systems for SCNB. This paper explores these challenges and proposes an RL-based solution for autonomous ANC systems within the context of SCNB, utilizing a Finite Difference Time Domain (FDTD) simulation environment to address low-frequency, moving sources, and outdoor propagation noise scenarios. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación of Spain through project MCIN/AEI/10.13039/501100011033 under Grant PID2021-124908NB-I00, and in part by the European Regional Development Fund (ERDF) A way of making Europe. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Noise measurement es_ES
dc.subject Finite difference methods es_ES
dc.subject Time-domain analysis es_ES
dc.subject Mathematical models es_ES
dc.subject Crystals es_ES
dc.subject Noise reduction es_ES
dc.subject Adaptation models es_ES
dc.subject Reinforcement learning es_ES
dc.subject Noise barriers es_ES
dc.subject Finite-difference time-domain es_ES
dc.subject Sonic crystals es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Improving Insertion Loss of Sonic Crystal Active Noise Barrier by Reinforcement Learning and Finite Difference Time Domain Simulations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2024.3406857 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124908NB-I00/ES/DESARROLLO DE HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA PROBLEMAS DE INGENIERIA CON INCERTIDUMBRE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Ramírez-Solana, D.; Galiana-Nieves, J.; Redondo, J.; Mangini, AM.; Fanti, MP. (2024). Improving Insertion Loss of Sonic Crystal Active Noise Barrier by Reinforcement Learning and Finite Difference Time Domain Simulations. IEEE Access. 12:77988-77998. https://doi.org/10.1109/ACCESS.2024.3406857 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2024.3406857 es_ES
dc.description.upvformatpinicio 77988 es_ES
dc.description.upvformatpfin 77998 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\520742 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem