Mostrar el registro sencillo del ítem
dc.contributor.author | Ramírez-Solana, David | es_ES |
dc.contributor.author | Galiana-Nieves, Jaime | es_ES |
dc.contributor.author | Redondo, Javier | es_ES |
dc.contributor.author | Mangini, Agostino Marcello | es_ES |
dc.contributor.author | Fanti, Maria Pia | es_ES |
dc.date.accessioned | 2024-07-26T18:10:29Z | |
dc.date.available | 2024-07-26T18:10:29Z | |
dc.date.issued | 2024-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206696 | |
dc.description.abstract | [EN] Sonic crystal noise barriers (SCNB) have emerged as a promising solution for mitigating traffic noise pollution. These barriers utilize periodic structures to selectively reflect acoustic waves at specific target frequencies, offering the advantage of being permeable to light and wind. However, their installation and maintenance costs have hindered widespread adoption. In contrast, active noise control (ANC) systems leverage speakers and microphones to generate opposing sound waves that cancel out incoming noise, presenting a potentially cost-effective alternative. The efficacy of ANC, however, hinges on the precision of noise prediction models and control algorithms. Reinforcement Learning (RL) technique, an interdisciplinary area of machine learning, has shown promise in enhancing ANC systems by enabling them to adapt to changing noise conditions and achieve superior noise reduction, particularly in enclosed spaces. Despite these advancements, several challenges remain in applying RL to ANC systems for SCNB. This paper explores these challenges and proposes an RL-based solution for autonomous ANC systems within the context of SCNB, utilizing a Finite Difference Time Domain (FDTD) simulation environment to address low-frequency, moving sources, and outdoor propagation noise scenarios. | es_ES |
dc.description.sponsorship | This work was supported in part by the Spanish Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación of Spain through project MCIN/AEI/10.13039/501100011033 under Grant PID2021-124908NB-I00, and in part by the European Regional Development Fund (ERDF) A way of making Europe. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Noise measurement | es_ES |
dc.subject | Finite difference methods | es_ES |
dc.subject | Time-domain analysis | es_ES |
dc.subject | Mathematical models | es_ES |
dc.subject | Crystals | es_ES |
dc.subject | Noise reduction | es_ES |
dc.subject | Adaptation models | es_ES |
dc.subject | Reinforcement learning | es_ES |
dc.subject | Noise barriers | es_ES |
dc.subject | Finite-difference time-domain | es_ES |
dc.subject | Sonic crystals | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Improving Insertion Loss of Sonic Crystal Active Noise Barrier by Reinforcement Learning and Finite Difference Time Domain Simulations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2024.3406857 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124908NB-I00/ES/DESARROLLO DE HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA PROBLEMAS DE INGENIERIA CON INCERTIDUMBRE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Ramírez-Solana, D.; Galiana-Nieves, J.; Redondo, J.; Mangini, AM.; Fanti, MP. (2024). Improving Insertion Loss of Sonic Crystal Active Noise Barrier by Reinforcement Learning and Finite Difference Time Domain Simulations. IEEE Access. 12:77988-77998. https://doi.org/10.1109/ACCESS.2024.3406857 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/ACCESS.2024.3406857 | es_ES |
dc.description.upvformatpinicio | 77988 | es_ES |
dc.description.upvformatpfin | 77998 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\520742 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |