- -

Symmetry estimating R x C vote transfer matrices from aggregate data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Symmetry estimating R x C vote transfer matrices from aggregate data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pavía, Jose M. es_ES
dc.contributor.author Romero, Rafael es_ES
dc.date.accessioned 2024-07-26T18:10:35Z
dc.date.available 2024-07-26T18:10:35Z
dc.date.issued 2024-02 es_ES
dc.identifier.issn 0964-1998 es_ES
dc.identifier.uri http://hdl.handle.net/10251/206701
dc.description.abstract [EN] Ecological inference methods are devised to estimate unknown inner-cells of 2-way contingency tables by inferring conditional distribution probabilities. This outlines one of the more long-standing social science problems, chiefly frequent in political science and sociology. To solve the problem, ecological inference algorithms consider an asymmetric relationship, with a main characteristic (e.g. race or social class) mapped to rows impacting on a dependent variable, usually the vote, mapped to columns. The problem arises because different solutions are reached depending on how variables are assigned to rows and columns. The models are asymmetric. In this paper, we propose 2 new sets of ecological inference algorithms and explore if accuracy could be improved by handling the problem in a symmetric way. We assess the accuracy of the proposed methods using real data from more than 550 concurrent elections where the true district-level cross-classifications of votes (straight- and split-tickets) are known. Our empirical assessment clearly identifies the symmetric solutions as more accurate. They outperform asymmetric methods 90% of the time and reduce error, on average, by 11%. Our results are based on data from simultaneous elections, so further research is required to see whether our conclusions can be maintained in other ecological inference contexts. Interested readers can easily use the proposed methods as they are implemented in the R package lphom. es_ES
dc.description.sponsorship This research has been supported by Conselleria de Educacion, Universidades y Empleo, Generalitat Valenciana [grant number AICO/2021/257] and by Ministerio de Economia e Innovacion [grant number PID2021-128228NB-I00]. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Journal of the Royal Statistical Society Series A (Statistics in Society) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Contingency tables, Ecological inference es_ES
dc.subject Linear programming es_ES
dc.subject Lphom es_ES
dc.subject Simultaneous elections es_ES
dc.subject Voter transitions es_ES
dc.title Symmetry estimating R x C vote transfer matrices from aggregate data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jrsssa/qnae013 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-128228NB-I00/ES/ENTENDIENDO EL COMPORTAMIENTO INDIVIDUAL EN UN CONTEXTO DINAMICO: INFORMACION, CULTURA E INSTITUCIONES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F257/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Pavía, JM.; Romero, R. (2024). Symmetry estimating R x C vote transfer matrices from aggregate data. Journal of the Royal Statistical Society Series A (Statistics in Society). https://doi.org/10.1093/jrsssa/qnae013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jrsssa/qnae013 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\522931 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem