- -

Tetra-uranium fluoride electrowinning by electro-electrodialysis cell (EED)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tetra-uranium fluoride electrowinning by electro-electrodialysis cell (EED)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cifuentes, Gerardo es_ES
dc.contributor.author Germain, Ignacio es_ES
dc.contributor.author Garrido, Belén es_ES
dc.contributor.author Cifuentes-Cabezas, Magdalena es_ES
dc.contributor.author Orrego, Pedro es_ES
dc.contributor.author Gentico, Iván es_ES
dc.contributor.author Pino, Eduardo es_ES
dc.contributor.author Calderón, Cristian es_ES
dc.date.accessioned 2024-07-26T18:10:47Z
dc.date.available 2024-07-26T18:10:47Z
dc.date.issued 2022-01-15 es_ES
dc.identifier.issn 1383-5866 es_ES
dc.identifier.uri http://hdl.handle.net/10251/206709
dc.description.abstract [EN] This work presents a novel electro-electrodialysis (EED) system for laboratory-scale uranium electrowinning based on a simple process of reactive electmdialysis of solutions of uranium (VI) oxide (UO3) dissolved in aqueous hydrofluoric acid (HF), leading to the formation of deposits of uranium tetrafluoride (UF4). For stainless steel cathodes, the best operating conditions for a concentration of 25 g/L for uranium were i = 40 A/m(2), T = 40 degrees C and 18 L/h electrolyte recirculation flowrate. The specific energy consumption (W) and current efficiency (p) for tetra uranium fluoride electrowinning was 4500 kWh/kg and 10.15%. When the cathodic metal was changed from stainless steel to aluminium, seeking to optimize the system, improved values of W and rho were achieved (645 kWh/kg and 68%, respectively). In the EED cells, the release of gaseous hydrogen is significantly lower for aluminum, due to its lower exchange current density (i(0)), with a magnitude of 10(-7) A/m(2). On the contrary, a considerable release of gaseous hydrogen is observed when the stainless-steel cathode is used, mainly due to the H+/H-2 reaction being catalysed by the stainless steel, inducing an increase in the acid consumption rate, devoting most of the energy consumed by the system in the proton reduction reaction. Polarization cathodic curves indicate that uranium has an estimate resting potential close to that of aluminium, which is -0.89 V. Finally, by chemical analysis (X-ray mass diffraction), UF4 and hydrated UF4 were identified as the main components of the electrodeposited product. es_ES
dc.description.sponsorship The authors acknowledge with thanks the support given to this work by the Department of Nuclear Materials of the Chilean Commission of Nuclear Energy (CCHNE) and by the University of Santiago, Chile, DICYT 021841PL and USA1899 -VRIDEI 051914 CM_PAP, Vice-rectory of Research, Development and Innovation and the projects Red CYTED318RT0551 and ERAMIN 2 from ANID and European Union. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Separation and Purification Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electro-electrodialysis es_ES
dc.subject Electrowinning es_ES
dc.subject Uranium tetrafluoride es_ES
dc.title Tetra-uranium fluoride electrowinning by electro-electrodialysis cell (EED) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.seppur.2021.119833 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/730238/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CYTED//318RT0551/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DICYT//DICYT 021841PL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DICYT//USA1899 -VRIDEI 051914 CM_PAP/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cifuentes, G.; Germain, I.; Garrido, B.; Cifuentes-Cabezas, M.; Orrego, P.; Gentico, I.; Pino, E.... (2022). Tetra-uranium fluoride electrowinning by electro-electrodialysis cell (EED). Separation and Purification Technology. 281:1-7. https://doi.org/10.1016/j.seppur.2021.119833 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.seppur.2021.119833 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 281 es_ES
dc.relation.pasarela S\508705 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universidad de Chile es_ES
dc.contributor.funder CYTED Ciencia y Tecnología para el Desarrollo es_ES
dc.contributor.funder Comisio&#769 es_ES
dc.contributor.funder n Chilena de Energi&#769 es_ES
dc.contributor.funder a Nuclear es_ES
dc.contributor.funder Agencia Nacional de Investigación y Desarrollo de Chile es_ES
dc.contributor.funder Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem