Mostrar el registro sencillo del ítem
dc.contributor.author | Cifuentes, Gerardo | es_ES |
dc.contributor.author | Germain, Ignacio | es_ES |
dc.contributor.author | Garrido, Belén | es_ES |
dc.contributor.author | Cifuentes-Cabezas, Magdalena | es_ES |
dc.contributor.author | Orrego, Pedro | es_ES |
dc.contributor.author | Gentico, Iván | es_ES |
dc.contributor.author | Pino, Eduardo | es_ES |
dc.contributor.author | Calderón, Cristian | es_ES |
dc.date.accessioned | 2024-07-26T18:10:47Z | |
dc.date.available | 2024-07-26T18:10:47Z | |
dc.date.issued | 2022-01-15 | es_ES |
dc.identifier.issn | 1383-5866 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206709 | |
dc.description.abstract | [EN] This work presents a novel electro-electrodialysis (EED) system for laboratory-scale uranium electrowinning based on a simple process of reactive electmdialysis of solutions of uranium (VI) oxide (UO3) dissolved in aqueous hydrofluoric acid (HF), leading to the formation of deposits of uranium tetrafluoride (UF4). For stainless steel cathodes, the best operating conditions for a concentration of 25 g/L for uranium were i = 40 A/m(2), T = 40 degrees C and 18 L/h electrolyte recirculation flowrate. The specific energy consumption (W) and current efficiency (p) for tetra uranium fluoride electrowinning was 4500 kWh/kg and 10.15%. When the cathodic metal was changed from stainless steel to aluminium, seeking to optimize the system, improved values of W and rho were achieved (645 kWh/kg and 68%, respectively). In the EED cells, the release of gaseous hydrogen is significantly lower for aluminum, due to its lower exchange current density (i(0)), with a magnitude of 10(-7) A/m(2). On the contrary, a considerable release of gaseous hydrogen is observed when the stainless-steel cathode is used, mainly due to the H+/H-2 reaction being catalysed by the stainless steel, inducing an increase in the acid consumption rate, devoting most of the energy consumed by the system in the proton reduction reaction. Polarization cathodic curves indicate that uranium has an estimate resting potential close to that of aluminium, which is -0.89 V. Finally, by chemical analysis (X-ray mass diffraction), UF4 and hydrated UF4 were identified as the main components of the electrodeposited product. | es_ES |
dc.description.sponsorship | The authors acknowledge with thanks the support given to this work by the Department of Nuclear Materials of the Chilean Commission of Nuclear Energy (CCHNE) and by the University of Santiago, Chile, DICYT 021841PL and USA1899 -VRIDEI 051914 CM_PAP, Vice-rectory of Research, Development and Innovation and the projects Red CYTED318RT0551 and ERAMIN 2 from ANID and European Union. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Separation and Purification Technology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Electro-electrodialysis | es_ES |
dc.subject | Electrowinning | es_ES |
dc.subject | Uranium tetrafluoride | es_ES |
dc.title | Tetra-uranium fluoride electrowinning by electro-electrodialysis cell (EED) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.seppur.2021.119833 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/730238/EU/Implement a European-wide coordination of research and innovation programs on raw materials to strengthen the industry competitiveness and the shift to a circular economy/ERA-MIN 2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CYTED//318RT0551/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DICYT//DICYT 021841PL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DICYT//USA1899-Vridei 05914 CM PAP | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Cifuentes, G.; Germain, I.; Garrido, B.; Cifuentes-Cabezas, M.; Orrego, P.; Gentico, I.; Pino, E.... (2022). Tetra-uranium fluoride electrowinning by electro-electrodialysis cell (EED). Separation and Purification Technology. 281:1-7. https://doi.org/10.1016/j.seppur.2021.119833 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.seppur.2021.119833 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 281 | es_ES |
dc.relation.pasarela | S\508705 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | CYTED Ciencia y Tecnología para el Desarrollo | es_ES |
dc.contributor.funder | Comisión Chilena de Energía Nuclear | es_ES |
dc.contributor.funder | Agencia Nacional de Investigación y Desarrollo de Chile | es_ES |
dc.contributor.funder | Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile | es_ES |