Mostrar el registro sencillo del ítem
dc.contributor.author | Aguado-Sarrió, Eric | es_ES |
dc.contributor.author | Prats-Montalbán, José Manuel | es_ES |
dc.contributor.author | Camps-Herrero, J. | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2024-07-31T18:01:27Z | |
dc.date.available | 2024-07-31T18:01:27Z | |
dc.date.issued | 2024-07-15 | es_ES |
dc.identifier.issn | 0169-7439 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206984 | |
dc.description.abstract | [EN] Functional MRI is, currently, the most sensitive technique in breast cancer for detecting early tumors, and perfusion (DCE-MRI) has become the most important sequence to depict and characterize angiogenesis and neovascularization. In this work, we propose the use of new biomarkers that are related to clear physiological phenomena, obtained from MCR-ALS as an alternative to curve -based pseudo-biomarkers and pharmacokinetics models. In order to provide a discrimination and prediction model between healthy tissue and cancer, we propose using PLS-DA with double cross -validation (2CV) and variable selection, repeated several times and obtaining excellent average results for the performance indexes (f -score: 0.9149, MCC: 0.8538, AUROC: 0.8794). After selecting the optimal prediction model, a unique probabilistic map called "virtual biopsy " that shows in different colors the probability that each pixel of the image has a tumor behavior is obtained, helping the specialist with the identification and characterization of breast tumors with only one easy -to -interpret biomarker map. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish Government (Science and Innovation Ministry) under the project PID2020-119262RB-I00, and by the Generalitat Valenciana under the project AICO/2021/111. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemometrics and Intelligent Laboratory Systems | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Biomarkers | es_ES |
dc.subject | Biopsies | es_ES |
dc.subject | Breast cancer | es_ES |
dc.subject | Double cross-validation | es_ES |
dc.subject | Perfusion | es_ES |
dc.subject | Virtual | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Virtual biopsies for breast cancer using MCR-ALS perfusion-based biomarkers and double cross-validation PLS-DA | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chemolab.2024.105152 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119262RB-I00/ES/TECNICAS ESTADISTICAS MULTIVARIANTES BASADAS EN VARIABLES LATENTES PARA EL DESARROLLO DE BIOMARCADORES DE IMAGEN PARA LA DIAGNOSIS Y PROGNOSIS DE CANCER DE MAMA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F111//OPTIMIZACIÓN DE PROCESOS EN LA INDUSTRIA 4.0 MEDIANTE TÉCNICAS ESTADÍSTICAS MULTIVARIANTES (INDOPT4.0)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Aguado-Sarrió, E.; Prats-Montalbán, JM.; Camps-Herrero, J.; Ferrer, A. (2024). Virtual biopsies for breast cancer using MCR-ALS perfusion-based biomarkers and double cross-validation PLS-DA. Chemometrics and Intelligent Laboratory Systems. 250. https://doi.org/10.1016/j.chemolab.2024.105152 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.chemolab.2024.105152 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 250 | es_ES |
dc.relation.pasarela | S\519503 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |