- -

A flexible Bayesian tool for CoDa mixed models: logistic-normal distribution with Dirichlet covariance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A flexible Bayesian tool for CoDa mixed models: logistic-normal distribution with Dirichlet covariance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Minaya, Joaquín es_ES
dc.contributor.author Rue, Haavard es_ES
dc.date.accessioned 2024-09-05T18:23:03Z
dc.date.available 2024-09-05T18:23:03Z
dc.date.issued 2024-04-16 es_ES
dc.identifier.issn 0960-3174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207459
dc.description.abstract [EN] Compositional Data Analysis (CoDa) has gained popularity in recent years. This type of data consists of values from disjoint categories that sum up to a constant. Both Dirichlet regression and logistic-normal regression have become popular as CoDa analysis methods. However, fitting this kind of multivariate models presents challenges, especially when structured random effects are included in the model, such as temporal or spatial effects. To overcome these challenges, we propose the logistic-normal Dirichlet Model (LNDM). We seamlessly incorporate this approach into the R-INLA package, facilitating model fitting and model prediction within the framework of Latent Gaussian Models. Moreover, we explore metrics like Deviance Information Criteria, Watanabe Akaike information criterion, and cross-validation measure conditional predictive ordinate for model selection in R-INLA for CoDa. Illustrating LNDM through two simulated examples and with an ecological case study on Arabidopsis thaliana in the Iberian Peninsula, we underscore its potential as an effective tool for managing CoDa and large CoDa databases. es_ES
dc.description.sponsorship Joaquin Martinez-Minaya gratefully acknowledges the Ministry of Science, Innovation and Universities (Spain) for research project PID2020-115882RB-I00. Joaquin Martinez-Minaya also acknowledges for Funding for open access charge: CRUE-Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Statistics and Computing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CoDa es_ES
dc.subject Dirichlet es_ES
dc.subject INLA es_ES
dc.subject Spatial es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A flexible Bayesian tool for CoDa mixed models: logistic-normal distribution with Dirichlet covariance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11222-024-10427-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115882RB-I00/ES/NUEVAS PROPUESTAS PARA LA ESTIMACION, PREDICCION Y VALIDACION DE MODELOS SEMIPARAMETRICOS PARA EL ANALISIS DE DATOS COMPLEJOS CON APLICACIONES EN SALUD Y CAMBIO CLIMATICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Martínez-Minaya, J.; Rue, H. (2024). A flexible Bayesian tool for CoDa mixed models: logistic-normal distribution with Dirichlet covariance. Statistics and Computing. 34(3). https://doi.org/10.1007/s11222-024-10427-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11222-024-10427-3 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\523305 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem