- -

An AI-based multiphase framework for improving the mechanical ventilation availability in emergency departments during respiratory disease seasons: a case study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An AI-based multiphase framework for improving the mechanical ventilation availability in emergency departments during respiratory disease seasons: a case study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortiz-Barrios, Miguel Angel es_ES
dc.contributor.author Petrillo, Antonella es_ES
dc.contributor.author Arias-Fonseca, Sebastian es_ES
dc.contributor.author McClean, Sally es_ES
dc.contributor.author de Felice, Fabio es_ES
dc.contributor.author Nugent, Chris es_ES
dc.contributor.author Uribe-López, Sheyla-Ariany es_ES
dc.date.accessioned 2024-09-05T18:23:09Z
dc.date.available 2024-09-05T18:23:09Z
dc.date.issued 2024-04-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207463
dc.description.abstract [EN] Background Shortages of mechanical ventilation have become a constant problem in Emergency Departments (EDs), thereby affecting the timely deployment of medical interventions that counteract the severe health complications experienced during respiratory disease seasons. It is then necessary to count on agile and robust methodological approaches predicting the expected demand loads to EDs while supporting the timely allocation of ventilators. In this paper, we propose an integration of Artificial Intelligence (AI) and Discrete-event Simulation (DES) to design effective interventions ensuring the high availability of ventilators for patients needing these devices.Methods First, we applied Random Forest (RF) to estimate the mechanical ventilation probability of respiratory-affected patients entering the emergency wards. Second, we introduced the RF predictions into a DES model to diagnose the response of EDs in terms of mechanical ventilator availability. Lately, we pretested two different interventions suggested by decision-makers to address the scarcity of this resource. A case study in a European hospital group was used to validate the proposed methodology.Results The number of patients in the training cohort was 734, while the test group comprised 315. The sensitivity of the AI model was 93.08% (95% confidence interval, [88.46 - 96.26%]), whilst the specificity was 85.45% [77.45 - 91.45%]. On the other hand, the positive and negative predictive values were 91.62% (86.75 - 95.13%) and 87.85% (80.12 - 93.36%). Also, the Receiver Operator Characteristic (ROC) curve plot was 95.00% (89.25 - 100%). Finally, the median waiting time for mechanical ventilation was decreased by 17.48% after implementing a new resource capacity strategy.Conclusions Combining AI and DES helps healthcare decision-makers to elucidate interventions shortening the waiting times for mechanical ventilators in EDs during respiratory disease epidemics and pandemics. es_ES
dc.description.sponsorship This work was supported by the European Union Next Generation EU under the Margarita Salas grant launched by Universitat Politècnica de València (Recovery, Transformation, and Resilience Plan) and Ministerio de Ciencia, Innovación y Universidades (Program for Requalification of the Spanish University System 2021 2023). es_ES
dc.language Inglés es_ES
dc.publisher BMC es_ES
dc.relation.ispartof INTERNATIONAL JOURNAL OF EMERGENCY MEDICINE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Artificial Intelligence (AI) es_ES
dc.subject Random Forest (RF) es_ES
dc.subject Discrete-Event-Simulation (DES) es_ES
dc.subject Emergency Department (ED) es_ES
dc.subject Mechanical ventilation es_ES
dc.subject Healthcare es_ES
dc.title An AI-based multiphase framework for improving the mechanical ventilation availability in emergency departments during respiratory disease seasons: a case study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12245-024-00626-0 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ortiz-Barrios, MA.; Petrillo, A.; Arias-Fonseca, S.; Mcclean, S.; De Felice, F.; Nugent, C.; Uribe-López, S. (2024). An AI-based multiphase framework for improving the mechanical ventilation availability in emergency departments during respiratory disease seasons: a case study. INTERNATIONAL JOURNAL OF EMERGENCY MEDICINE. 17(1). https://doi.org/10.1186/s12245-024-00626-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12245-024-00626-0 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1865-1372 es_ES
dc.identifier.pmid 38561694 es_ES
dc.identifier.pmcid PMC10986051 es_ES
dc.relation.pasarela S\522777 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem